Learn R Programming

Luminescence (version 0.4.1)

calc_MinDose: Apply the (un-)logged minimum age model (MAM) after Galbraith et al. (1999) to a given De distribution

Description

Function to fit the (un-)logged three or four parameter minimum dose model (MAM-3/4) to De data.

Usage

calc_MinDose(data, sigmab, log = TRUE, par = 3, bootstrap = FALSE, 
    boundaries, init.values, plot = TRUE, ...)

Arguments

data
RLum.Results or data.frame (required): for data.frame: two columns with De (data[,1]) and De error (values[,2])
sigmab
numeric (required): spread in De values given as a fraction (e.g. 0.2). This value represents the expected overdispersion in the data should the sample be well-bleached (Cunningham & Walling 2012
log
logical (with default): fit the (un-)logged minimum dose model to De data
par
numeric (with default): apply the 3- or 4-parametric minimum age model (par=3 or par=4). The MAM-3 is used by default.
bootstrap
logical (with default): apply the recycled bootstrap approach of Cunningham & Wallinga (2012).
boundaries
list: a named list of boundary values for gamma, sigma, p0 and mu to be used in the optimisation routine (e.g. list(gamma=c(0.01,100), sigma=c(0.01,5), p0=c(0.01,0.99), mu=c(10, 100))). If no
init.values
numeric: a named list with starting values for gamma, sigma, p0 and mu (e.g. list(gamma=100 sigma=1.5, p0=0.1, mu=100)). If no values are provided reasonable values are tried to be estimated
plot
logical (with default): plot output (TRUE/FALSE)
...
further arguments for bootstrapping (bs.M, bs.N, bs.h, sigmab.sd). See details for their usage.

Value

  • # EXAMPLE ####

Function version

0.4 (2014-12-17 12:52:58)

Details

Parameters This model has four parameters: rl{ gamma: minimum dose on the log scale mu: mean of the non-truncated normal distribution sigma: spread in ages above the minimum p0: proportion of grains at gamma } If par=3 (default) the 3-parametric minimum age model is applied, where gamma = mu. For par=4 the 4-parametric model is applied instead. (Un-)logged model In the original version of the three-parameter minimum dose model, the basic data are the natural logarithms of the De estimates and relative standard errors of the De estimates. This model will be applied if log = TRUE. If log = FALSE, the modified un-logged model will be applied instead. This has essentially the same form as the original version. gamma and sigma are in Gy and gamma becomes the minimum true dose in the population. While the original (logged) version of the mimimum dose model may be appropriate for most samples (i.e. De distributions), the modified (un-logged) version is specially designed for modern-age and young samples containing negative, zero or near-zero De estimates (Arnold et al. 2009, p. 323). Boundaries Depending on the data, the upper and lower bounds for gamma, mu, sigma and p0 need to be specified. If no values are provided for boundaries the function tries to estimate reasonable boundaries. However, these might not be appropriate in all cases and if the final estimate of any of these parameters is on the boundary, make sure to adjust the boundaries via boundaries. Initial values The log likelihood calculations use the optim function with the L-BFGS-B method. Accordingly, initial values for the four parameters need to be specified. If no values are provided for init.values reasonable starting values are estimated. If the final estimates of gamma, mu, sigma and p0 are totally off target, consider providing custom starting values via init.values.

References

Arnold, L.J., Roberts, R.G., Galbraith, R.F. & DeLong, S.B., 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4, 306-325. Galbraith, R.F. & Laslett, G.M., 1993. Statistical models for mixed fission track ages. Nuclear Tracks Radiation Measurements 4, 459-470. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry 41, 339-364. Galbraith, R.F., 2005. Statistics for Fission Track Analysis, Chapman & Hall/CRC, Boca Raton. Galbraith, R.F. & Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 1-27. Further reading Arnold, L.J. & Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204-230. Bailey, R.M. & Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475-2502. Cunningham, A.C. & Wallinga, J., 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology 12, 98-106. Rodnight, H., Duller, G.A.T., Wintle, A.G. & Tooth, S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1, 109-120. Rodnight, H., 2008. How many equivalent dose values are needed to obtain a reproducible distribution?. Ancient TL 26, 3-10.

See Also

calc_CentralDose, calc_CommonDose, calc_FiniteMixture, calc_FuchsLang2001, calc_MaxDose

Examples

Run this code
## load example data
data(ExampleData.DeValues, envir = environment())

# apply the un-logged, 3-parametric minimum age model
calc_MinDose(data = ExampleData.DeValues, par = 3, sigmab = 0.2, log = FALSE)

# re-run the model, but save results to a variable
mam<- calc_MinDose(data = ExampleData.DeValues, par = 3, sigmab = 0.2, log = FALSE, plot = FALSE)

# show summary table
get_RLum.Results(mam, "summary")

# plot the log likelihood profiles retroactively
plot_RLum.Results(mam)

Run the code above in your browser using DataLab