Last chance! 50% off unlimited learning
Sale ends in
Computes the cauchit (tangent) link transformation, including its inverse and the first two derivatives.
cauchitlink(theta, bvalue = .Machine$double.eps,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
Numeric or character. See below for further details.
See Links
.
Details at Links
.
For deriv = 0
, the tangent of theta
, i.e.,
tan(pi * (theta-0.5))
when inverse = FALSE
,
and if inverse = TRUE
then
0.5 + atan(theta)/pi
.
For deriv = 1
, then the function returns
d eta
/ d theta
as a function of
theta
if inverse = FALSE
, else if inverse = TRUE
then it returns the reciprocal.
This link function is an alternative link function for parameters that lie in the unit interval. This type of link bears the same relation to the Cauchy distribution as the probit link bears to the Gaussian. One characteristic of this link function is that the tail is heavier relative to the other links (see examples below).
Numerical values of theta
close to 0 or 1 or out of range result
in Inf
, -Inf
, NA
or NaN
.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London: Chapman & Hall.
logitlink
,
probitlink
,
clogloglink
,
loglink
,
cauchy
,
cauchy1
,
Cauchy
.
# NOT RUN {
p <- seq(0.01, 0.99, by = 0.01)
cauchitlink(p)
max(abs(cauchitlink(cauchitlink(p), inverse = TRUE) - p)) # Should be 0
p <- c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by = 0.01))
cauchitlink(p) # Has no NAs
# }
# NOT RUN {
par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
p <- seq(0.01, 0.99, by = 0.01)
for (d in 0:1) {
matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "purple", ylab = "transformation",
las = 1, main = if (d == 0) "Some probability link functions"
else "First derivative")
lines(p, logitlink(p, deriv = d), col = "limegreen")
lines(p, probitlink(p, deriv = d), col = "purple")
lines(p, clogloglink(p, deriv = d), col = "chocolate")
lines(p, cauchitlink(p, deriv = d), col = "tan")
if (d == 0) {
abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink", "clogloglink",
"cauchitlink"), lwd = mylwd,
col = c("limegreen", "purple", "chocolate", "tan"))
} else
abline(v = 0.5, lty = "dashed")
}
for (d in 0) {
matplot(y, cbind( logitlink(y, deriv = d, inverse = TRUE),
probitlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "purple", xlab = "transformation", ylab = "p",
main = if (d == 0) "Some inverse probability link functions"
else "First derivative", las=1)
lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "limegreen")
lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "purple")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "chocolate")
lines(y, cauchitlink(y, deriv = d, inverse = TRUE), col = "tan")
if (d == 0) {
abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink", "clogloglink",
"cauchitlink"), lwd = mylwd,
col = c("limegreen", "purple", "chocolate", "tan"))
}
}
par(lwd = 1)
# }
Run the code above in your browser using DataLab