Learn R Programming

lmf (version 1.2)

ci.boot.lmf: Confidence intervals for class "boot.lmf"

Description

Constructs confidence intervals (CIs) for the bootstrapped parameters in an object of class "boot.lmf".

Usage

ci.boot.lmf(x, clevel = 0.05)

Arguments

x
an object of class "boot.lmf".
clevel
the confidence level required.

Value

ci.boot.lmf returns a list containing the following components:
call
the matched call.
nboot
the number of bootstrap replicates generated.
what
which set of parameters which has been to bootstrapped. See ?boot.lmf for details.
clevel
the confidence level specified.
uage
the unique age classes in the data set.
nage
the number of unique age classes in the data set.
l
CI for the projection matrix.
luv
CI for $\lambda$, u and v.
sigma2.dj
CI for the demographic variance for each age class.
sigma2.d
CI for the total demographic variance
M
CI for the estimated temporal covariance matrix.
aM
CI for the estimated temporal mean coefficients of selection
sigma2.e
CI for the environmental variance
Anf
CI for the estimated temporal covariance matrix assuming no fluctuating selection.
anf
CI for the estimated temporal mean selection coefficients assuming no fluctuating selection.

Details

ci.boot.lmf construct confidence intervals (CIs) from the quantiles of the bootstrap replicates and uses the function quantile.

See Engen et al. 2012 for details on the method for estimating and bootstrapping the parameters.

References

Engen, S., Saether, B.-E., Kvalnes, T. and Jensen, H. 2012. Estimating fluctuating selection in age-structured populations. Journal of Evolutionary Biology, 25, 1487-1499.

See Also

lmf, boot.lmf, quantile

Examples

Run this code
#Data set from Engen et al. 2012
data(sparrowdata)
#Fit model
lmf.1 <- lmf(formula = cbind(recruits, survival) ~ weight + tars,
               age = age, year = year, data = sparrowdata)
#Bootstrap parameters
b.1 <- boot.lmf(object = lmf.1, nboot = 10, sig.dj = TRUE,
 what = "all", asim = "parametric")
#Generate CI
ci.boot.lmf(b.1)

Run the code above in your browser using DataLab