prob.groupMatrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
max.probHighest probability of correct classification.
h.optOptimal smoothing parameter or bandwidht estimated.
DMatrix of distances of the optimal quantile distance hh.opt.
prob.classificationProbability of correct classification by group.
misclassificationVector of probability of misclassification by number of neighbors knn.
hVector of smoothing parameter or bandwidht.
CA call of function classif.kernel.fd.
Details
Make the group classification of a training dataset using kernel estimation: Kernel.
Different types of metric funtions can be used.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis.
Springer Series in Statistics, New York.
Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at
http://www.lsp.ups-tlse.fr/staph/npfda/