Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 0.9.4)

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)

Description

This package implements functional data methods.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

5,150

Version

0.9.4

License

GPL-2

Maintainer

Oviedo la Fuente

Last Published

March 9th, 2011

Functions in fda.usc (0.9.4)

phoneme

phoneme data
Depth

Provides the depth measure for functional data
Kernel.asymmetric

Asymmetric Smoothing Kernel
depth.mode

Provides the depth measure (mode) for functional data
S.basis

Smoothing matrix with roughness penalties by basis representation.
CV.S

The cross-validation (CV) score
Outliers.fdata

Detecting outliers for functional dataset
depth.FM

Fraiman-Muniz depth measure
fregre.glm

Fitting Functional Generalized Linear Models
S.np

Smoothing matrix by nonparametric methods.
fregre.pc.cv

Functional Regression using selection of number of principal components
min.np

Smoothing of functional data using nonparametric kernel estimation
fdata

Converts raw data or other functional data classes into fdata class.
classif.knn.fd

k-Nearest Neighbor Classifier from Functional Data
anova.RPm

Functional ANOVA with Random Project.
create.fdata.basis

Create Basis Set for Functional Data of fdata class
fdata2fd

Converts fdata class object into fd class object
fdata.cen

Functional data centred (subtract the mean of each discretization point)
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
fregre.lm

Fitting Functional Linear Models
influence.quan

Quantile for influence measures
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
fdata.deriv

Computes the derivative of functional data object.
GCV.S

The generalized cross-validation (GCV) score.
Var.y

Sampling Variance estimates
fregre.pc

Functional Regression with scalar response using Principal Components Analysis.
fda.usc.internal

fda.usc internal functions
semimetric.NPFDA

Proximities between functional data (semi-metrics)
predict.fregre.plm

Predict method for semi-functional linear regression model.
summary.classif.fd

Summarizes information from kernel classification methods.
influnce.fdata

Functional influence measures
depth.RP

Provides the depth measure using random projections for functional data
predict.fregre.lm

Predict method for functional linear model of fregre.lm fits object
fregre.plm

Semi-functional linear regression with scalar response.
h.default

Calculation of the smoothing parameter (h) for a functional data
depth.RPD

Provides the depth measure by random projections using derivatives
fregre.basis

Functional Regression with scalar response using basis representation.
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
cond.quantile

Conditional quantile
fdata.bootstrap

Bootstrap samples of a functional statistic
cond.F

Conditional Distribution Function
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
Kernel.integrate

Integrate Smoothing Kernels.
Descriptive

Descriptive measures for functional data.
cond.mode

Conditional mode
predict.fregre.glm

Predict method for functional linear model of fregre.glm fits object
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
summary.fregre.fd

Summarizes information from fregre.fd objects.
classif.kernel.fb

Kernel classifier from Functional Data Training by basis representation
aemet

aemet data
norm.fdata

Aproximates Lp-norm for functional data.
metric.lp

Aproximates Lp-metric distances for functional data.
poblenou

poblenou data
semimetric.basis

Proximities between functional data
pc.cor

Correlation for functional data by Principal Component Analysis
Kernel

Symmetric Smoothing Kernels.
kmeans.fd

K-Means Clustering for functional data
pc.fdata

Principal components for functional data
min.basis

Select the number of basis using GCV method.
tecator

tecator data
predict.classif.fd

Predicts from a fitted classif.fd object.
classif.kernel.fd

Kernel Classifier from Functional Data
FDR

False Discorvery Rate (FDR)
plot.fdata

Plot functional data: fdata.
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
anova.hetero

ANOVA for heteroscedastic data
pls.fdata

Partial least squares components for functional data.
fregre.pls.cv

Functional PLS regression with scalar response using selection of number of PLS components
int.simpson

Simpson integration
fdata2pls

Partial least squares components for functional data.
classif.glm

Classification Fitting Functional Generalized Linear Models
fregre.pls

Functional PLS regression with scalar response
classif.knn

k-Nearest Neighbor Classifier from Functional Data
dis.cos.cor

Proximities between functional data
fdata.methods

fdata S3 Group Generic Functions
predict.classif

Predicts from a fitted classif object.
fregre.kgam

Fitting Functional Generalized Additive Models.
classif.gsam

Classification Fitting Functional Generalized Additive Models
summary.classif

Summarizes information from kernel classification methods.
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
fregre.bootstrap

Bootstrap regression
rproc2fdata

Generate random process of fdata class.
dev.S

The deviance score .
fdata2pc

Principal components for functional data
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
predict.fregre.kgam

Predict method for functional generalized additive model of fregre.kgam fits object
classif.kernel

Kernel Classifier from Functional Data
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
predict.fregre.gkam

Predict method for functional generalized kernel additive model of fregre.gkam fits object
classif.np

Kernel Classifier from Functional Data
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
predict.fregre.gsam

Predict method for functional generalized spectral additive model of fregre.gsam fits object
flm.Ftest

F-test for the Functional Linear Model with scalar response
classif.kgam

Classification Fitting Functional Generalized Additive Models
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
rber.gold

Gold section bootstrap sampling
summary.fregre.kgam

Summarizes information from fregre.kgam objects.
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
summary.fregre.gkam

Summarizes information from fregre.gkam objects.