classif.np(group,fdataobj,h=NULL,Ker=AKer.norm,metric,
type.CV = GCV.S,type.S=S.NW,par.CV=list(trim=0),par.S=list(),...)
classif.knn(group,fdataobj,knn=NULL,metric,
type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)
classif.kernel(group,fdataobj,h=NULL,Ker=AKer.norm,metric,
type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)fdata class object.metric.lp.GCV.S method.S. By default S is calculated by Nadaraya-Watson kernel estimator (S.NW).type.CV: trim, the alpha of the trimming and draw=TRUE.type.S: w, the weights.fdata class object.n.hh.opt.knn.classif.kernel.Kernel.
Different types of metric funtions can be used. Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at http://www.lsp.ups-tlse.fr/staph/npfda/
predict.classifdata(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
h=9:19
out=classif.np(glearn,mlearn,h=h)
summary.classif(out)
#round(out$prob.group,4)
Run the code above in your browser using DataLab