Learn R Programming

fda.usc (version 1.2.3)

classif.np: Kernel Classifier from Functional Data

Description

Fits Nonparametric Supervised Classification for Functional Data.

Usage

classif.np(group,fdataobj,h=NULL,Ker=AKer.norm,metric, type.CV = GCV.S,type.S=S.NW,par.CV=list(trim=0),par.S=list(),...) classif.knn(group,fdataobj,knn=NULL,metric, type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...) classif.kernel(group,fdataobj,h=NULL,Ker=AKer.norm,metric, type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)

Arguments

group
Factor of length n
fdataobj
fdata class object.
h
Vector of smoothing parameter or bandwidth.
knn
Vector of number of nearest neighbors considered.
Ker
Type of kernel used.
metric
Metric function, by default metric.lp.
type.CV
Type of cross-validation. By default generalized cross-validation GCV.S method.
type.S
Type of smothing matrix S. By default S is calculated by Nadaraya-Watson kernel estimator (S.NW).
par.CV
List of parameters for type.CV: trim, the alpha of the trimming and draw=TRUE.
par.S
List of parameters for type.S: w, the weights.
...
Arguments to be passed for metric.lp o other metric function and Kernel function.

Value

fdataobj
fdata class object.
group
Factor of length n.
group.est
Estimated vector groups
prob.group
Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
max.prob
Highest probability of correct classification.
h.opt
Optimal smoothing parameter or bandwidht estimated.
D
Matrix of distances of the optimal quantile distance hh.opt.
prob.classification
Probability of correct classification by group.
misclassification
Vector of probability of misclassification by number of neighbors knn.
h
Vector of smoothing parameter or bandwidht.
C
A call of function classif.kernel.

Details

Make the group classification of a training dataset using kernel or KNN estimation: Kernel. Different types of metric funtions can be used.

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.

Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at http://www.lsp.ups-tlse.fr/staph/npfda/

See Also

See Also as predict.classif

Examples

Run this code
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]

h=9:19
out=classif.np(glearn,mlearn,h=h)
summary.classif(out)
#round(out$prob.group,4)

Run the code above in your browser using DataLab