Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 1.2.3)

Functional Data Analysis and Utilities for Statistical Computing

Description

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

2,504

Version

1.2.3

License

GPL-2

Maintainer

Manuel Oviedo de la Fuente

Last Published

April 28th, 2016

Functions in fda.usc (1.2.3)

FDR

False Discorvery Rate (FDR)
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
classif.gsam

Classification Fitting Functional Generalized Additive Models
Depth for a multivariate dataset

Provides the depth measure for multivariate data
CV.S

The cross-validation (CV) score
Depth for multivariate fdata

Provides the depth measure for a list of p--functional data objects
Outliers.fdata

Detecting outliers for functional dataset
classif.depth

Classifier from Functional Data
classif.tree

Classification Fitting Functional Recursive Partitioning and Regression Trees
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
fdata

Converts raw data or other functional data classes into fdata class.
Kernel.asymmetric

Asymmetric Smoothing Kernel
anova.RPm

Functional ANOVA with Random Project.
cond.F

Conditional Distribution Function
metric.hausdorff

Compute the Hausdorff distances between two curves.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
create.fdata.basis

Create Basis Set for Functional Data of fdata class
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
dis.cos.cor

Proximities between functional data
fdata.methods

fdata S3 Group Generic Functions
S.np

Smoothing matrix by nonparametric methods.
S.basis

Smoothing matrix with roughness penalties by basis representation.
fdata.bootstrap

Bootstrap samples of a functional statistic
Depth for univariate fdata

Provides the depth measure for functional data
aemet

aemet data
fregre.lm

Fitting Functional Linear Models
dev.S

The deviance score .
fda.usc.internal

fda.usc internal functions
h.default

Calculation of the smoothing parameter (h) for a functional data
anova.hetero

ANOVA for heteroscedastic data
min.np

Smoothing of functional data using nonparametric kernel estimation
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
gridfdata, rcombfdata

Utils for generate functional data
fdata.deriv

Computes the derivative of functional data object.
rp.flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response using random projections
fregre.bootstrap

Bootstrap regression
MCO

Mithochondiral calcium overload (MCO) data set
P.penalty

Penalty matrix for higher order differences
classif.np

Kernel Classifier from Functional Data
fdata2pls

Partial least squares components for functional data.
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
predict.classif

Predicts from a fitted classif object.
flm.Ftest

F-test for the Functional Linear Model with scalar response
fregre.pls

Functional Penalized PLS regression with scalar response
min.basis

Select the number of basis using GCV method.
fregre.basis.fr

Functional Regression with functional response using basis representation.
phoneme

phoneme data
fregre.ppc.cv

Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components
Var.y

Sampling Variance estimates
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
semimetric.basis

Proximities between functional data
fregre.basis

Functional Regression with scalar response using basis representation.
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components
metric.kl

Kullback--Leibler distance
cond.quantile

Conditional quantile
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
summary.fregre.fd

Summarizes information from fregre.fd objects.
fregre.plm

Semi-functional partially linear model with scalar response.
norm.fdata

Aproximates Lp-norm for functional data.
rproc2fdata

Simulate several random processes.
fregre.ppc,fregre.ppls

Functional Penalized PC (or PLS) regression with scalar response
semimetric.NPFDA

Proximities between functional data (semi-metrics)
metric.lp

Aproximates Lp-metric distances for functional data.
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
cond.mode

Conditional mode
classif.glm

Classification Fitting Functional Generalized Linear Models
fregre.pc

Functional Regression with scalar response using Principal Components Analysis.
Descriptive

Descriptive measures for functional data.
GCV.S

The generalized cross-validation (GCV) score.
predict.classif.DD

Predicts from a fitted classif.DD object.
Kernel

Symmetric Smoothing Kernels.
anova.onefactor

One--way anova model for functional data
Kernel.integrate

Integrate Smoothing Kernels.
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
metric.dist

Distance Matrix Computation
fdata2pc

Principal components for functional data
classif.DD

DD-Classifier Based on DD-plot
rwild

Wild bootstrap residuals
predict.functional.response

Predict method for functional response model
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components
fdata.cen

Functional data centred (subtract the mean of each discretization point)
int.simpson

Simpson integration
tecator

tecator data
fregre.glm

Fitting Functional Generalized Linear Models
rp.flm.statistic

Statistic for testing the FLM using random projections
poblenou

poblenou data
subset.fdata

Subsetting
summary.classif

Summarizes information from kernel classification methods.
plot.fdata

Plot functional data: fdata.
Utilities

A wrapper for the split and unlist function for fdata object
influnce.fdata

Functional influence measures
order.fdata

fdata2fd

Converts fdata class object into fd class object
kmeans.fd

K-Means Clustering for functional data
influence.quan

Quantile for influence measures
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
predict.fregre.GAM

Predict method for functional regression model