classif.np(group,fdataobj,h=NULL,Ker=AKer.norm,metric,
type.CV = GCV.S,type.S=S.NW,par.CV=list(trim=0),par.S=list(),...)
classif.knn(group,fdataobj,knn=NULL,metric,
type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)
classif.kernel(group,fdataobj,h=NULL,Ker=AKer.norm,metric,
type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)
fdata
class object.metric.lp
.GCV.S
method.S
. By default S
is calculated by Nadaraya-Watson kernel estimator (S.NW
).type.CV
: trim
, the alpha of the trimming and draw=TRUE
.type.S
: w
, the weights.fdata
class object.n
.hh.opt
.knn
.classif.kernel
.Kernel
.
Different types of metric funtions can be used. Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at http://www.lsp.ups-tlse.fr/staph/npfda/
predict.classif
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
h=9:19
out=classif.np(glearn,mlearn,h=h)
summary.classif(out)
#round(out$prob.group,4)
Run the code above in your browser using DataLab