Learn R Programming

fda.usc (version 1.1.0)

cond.F: Conditional Distribution Function

Description

Calculate the conditional distribution function of a scalar response with functional data.

Usage

cond.F(fdata0,y0,fdataobj,y,h=0.15,g=0.15,metric=metric.lp,
Ker=list(AKer=AKer.epa,IKer=IKer.epa),...)

Arguments

fdata0
Conditional explanatory functional data of fdata class.
y0
Vector of conditional response with length n.
fdataobj
fdata class object.
y
Vector of scalar response with length nn.
h
Smoothing parameter or bandwidth of response y.
g
Smoothing parameter or bandwidth of explanatory functional data fdataobj.
metric
Metric function, by default metric.lp.
Ker
List of 2 arguments. The fist argument is a character string that determines the type of asymetric kernel (see Kernel.asymmetric). Asymmetric Epanechnikov kernel is selected by default. The second
...
Further arguments passed to or from other methods.

Value

  • FcConditional distribution function.
  • y0Vector of conditional response.
  • gSmoothing parameter or bandwidth of explanatory functional data (fdataobj).
  • hSmoothing parameter or bandwidth of respone, y.
  • x.distDistance matrix between curves of fdataobj object.
  • xy.distDistance matrix between cuves of fdataobj and fdata0 objects.

Details

If x.dist=NULL the distance matrix between fdata objects is calculated by function passed in metric argument.

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.

See Also

See Also as: cond.mode and cond.quantile.

Examples

Run this code
# Read data
n= 500
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)

prx=x[1:100];pry=y[1:100]
ind=101;ind2=102:110
pr0=x[ind];pr10=x[ind2,]
ndist=61
gridy=seq(-1.598069,1.598069, len=ndist)
# Conditional Function
res1 = cond.F(pr10, gridy, prx, pry,p=1)
# res2 = cond.F(pr10, gridy, prx, pry,h=0.3)
# res3 = cond.F(pr10, gridy, prx, pry,g=0.25,h=0.3)

# plot(res1$Fc[,1],type="l",ylim=c(0,1))
# lines(res2$Fc[,1],type="l",col=2)
# lines(res3$Fc[,1],type="l",col=3)

Run the code above in your browser using DataLab