Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 1.1.0)

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)

Description

The R package fda.usc carries out exploratory and descriptive analysis of functional data such as depth measurements or functional atypical curves detection, functions to compute functional regression models with a scalar response, supervised and unsupervised classification methods and functional analysis of variance.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

2,504

Version

1.1.0

License

GPL-2

Maintainer

Manuel Oviedo de la Fuente

Last Published

December 16th, 2013

Functions in fda.usc (1.1.0)

S.basis

Smoothing matrix with roughness penalties by basis representation.
Kernel.asymmetric

Asymmetric Smoothing Kernel
classif.depth

Classifier from Functional Data
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
classif.np

Kernel Classifier from Functional Data
fregre.lm

Fitting Functional Linear Models
P.penalty

Penalty matrix for higher order differences
FDR

False Discorvery Rate (FDR)
S.np

Smoothing matrix by nonparametric methods.
dis.cos.cor

Proximities between functional data
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
fdata.deriv

Computes the derivative of functional data object.
flm.Ftest

F-test for the Functional Linear Model with scalar response
aemet

aemet data
fdata2fd

Converts fdata class object into fd class object
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components
fregre.glm

Fitting Functional Generalized Linear Models
h.default

Calculation of the smoothing parameter (h) for a functional data
fregre.ppc,fregre.ppls

Functional Penalized PC (or PLS) regression with scalar response
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
Outliers.fdata

Detecting outliers for functional dataset
fdata.methods

fdata S3 Group Generic Functions
rwild

Wild bootstrap residuals
fdata.cen

Functional data centred (subtract the mean of each discretization point)
cond.quantile

Conditional quantile
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
Utilities

A wrapper for the split and unlist function for functional data
GCV.S

The generalized cross-validation (GCV) score.
Var.y

Sampling Variance estimates
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
anova.RPm

Functional ANOVA with Random Project.
classif.glm

Classification Fitting Functional Generalized Linear Models
metric.kl

Kullback--Leibler distance
cond.mode

Conditional mode
anova.onefactor

One--way anova model for functional data
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components
min.np

Smoothing of functional data using nonparametric kernel estimation
create.fdata.basis

Create Basis Set for Functional Data of fdata class
Kernel.integrate

Integrate Smoothing Kernels.
fregre.ppc.cv

Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components
min.basis

Select the number of basis using GCV method.
Depth Functional

Provides the depth measure for functional data
fregre.pls

Functional Penalized PLS regression with scalar response
Descriptive

Descriptive measures for functional and multivariate data.
Depth Multivariate

Provides the depth measure for multivariate data
poblenou

poblenou data
predict.functional.response

Predict method for functional response model
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
fdata.bootstrap

Bootstrap samples of a functional statistic
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
summary.classif

Summarizes information from kernel classification methods.
predict.fregre.GAM

Predict method for functional regression model
int.simpson

Simpson integration
fregre.basis

Functional Regression with scalar response using basis representation.
fregre.pc

Functional Regression with scalar response using Principal Components Analysis.
summary.fregre.fd

Summarizes information from fregre.fd objects.
semimetric.NPFDA

Proximities between functional data (semi-metrics)
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
MCO

Mithochondiral calcium overload (MCO) data set
Kernel

Symmetric Smoothing Kernels.
dev.S

The deviance score .
norm.fdata

Aproximates Lp-norm for functional data.
influence.quan

Quantile for influence measures
predict.classif

Predicts from a fitted classif object.
cond.F

Conditional Distribution Function
fda.usc.internal

fda.usc internal functions
fregre.plm

Semi-functional partially linear model with scalar response.
fregre.basis.fr

Functional Regression with functional response using basis representation.
metric.lp

Aproximates Lp-metric distances for functional data.
rproc2fdata

Generate random process of fdata class.
fregre.bootstrap

Bootstrap regression
plot.fdata

Plot functional data: fdata.
semimetric.basis

Proximities between functional data
kmeans.fd

K-Means Clustering for functional data
phoneme

phoneme data
tecator

tecator data
classif.gsam

Classification Fitting Functional Generalized Additive Models
anova.hetero

ANOVA for heteroscedastic data
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
influnce.fdata

Functional influence measures
metric.dist

Distance Matrix Computation
fdata2pc

Principal components for functional data
CV.S

The cross-validation (CV) score
fdata

Converts raw data or other functional data classes into fdata class.
fdata2pls

Partial least squares components for functional data.
order.fdata