coordProj(data, dimens = c(1,2), parameters = NULL, z = NULL, classification = NULL, truth = NULL, uncertainty = NULL, what = c("classification", "errors", "uncertainty"), addEllipses = TRUE, symbols = NULL, colors = NULL, scale = FALSE, xlim = NULL, ylim = NULL, CEX = 1, PCH = ".", main = FALSE, ...)
c(1,2)
, in which the first
dimension is plotted against the second.
[i,k]
th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification
and
uncertainty
if those arguments aren't available.
data
. If present argument z
will be ignored.
classification
or z
is also present,
this is used for displaying classification errors.
z
will be ignored.
"classification"
(default), "errors"
, "uncertainty"
.
"classification"
or
"uncertainty"
plots.
classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique
).
The default is given by mclust.options("classPlotSymbols")
.
classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique
).
The default is given by mclust.options("classPlotColors")
.
scale=FALSE
NULL
indicating whether or not to add a title to
the plot identifying the dimensions used.
clPairs
,
randProj
,
mclust2Dplot
,
mclust.options
est <- meVVV(iris[,-5], unmap(iris[,5]))
## Not run:
# par(pty = "s", mfrow = c(1,1))
# coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
# what = "classification", main = TRUE)
# coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
# truth = iris[,5], what = "errors", main = TRUE)
# coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
# what = "uncertainty", main = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab