randProj(data, seeds=0, parameters=NULL, z=NULL, classification=NULL, truth=NULL, uncertainty=NULL, what = c("classification", "errors", "uncertainty"), quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE, xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", main = FALSE, ...)
0:1000
.
Each seed should produce a different projection.
[i,k]
th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification
and
uncertainty
if those arguments aren't available.
data
. If present argument z
will be ignored.
classification
or z
is also present,
this is used for displaying classification errors.
z
will be ignored.
"classification"
(default), "errors"
, "uncertainty"
.
classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique
).
The default is given by mclust.options("classPlotSymbols")
.
classification
. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique
).
The default is given by mclust.options("classPlotColors")
.
scale=FALSE
NULL
indicating whether or not to add a title
to the plot identifying the dimensions used.
clPairs
,
coordProj
,
mclust2Dplot
,
mclust.options
est <- meVVV(iris[,-5], unmap(iris[,5]))
## Not run:
# par(pty = "s", mfrow = c(1,1))
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# what = "classification", main = TRUE)
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# truth = iris[,5], what = "errors", main = TRUE)
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# what = "uncertainty", main = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab