randProj(data, seeds=0, parameters=NULL, z=NULL, classification=NULL, truth=NULL, uncertainty=NULL, what = c("classification", "errors", "uncertainty"), quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE, xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", main = FALSE, ...)0:1000.
Each seed should produce a different projection.
[i,k]th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification and
uncertainty if those arguments aren't available.
data. If present argument z
will be ignored.
classification
or z is also present,
this is used for displaying classification errors.
z
will be ignored.
"classification"
(default), "errors", "uncertainty".
classification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique).
The default is given by mclust.options("classPlotSymbols").
classification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the function unique).
The default is given by mclust.options("classPlotColors").
scale=FALSE
NULL indicating whether or not to add a title
to the plot identifying the dimensions used.
clPairs,
coordProj,
mclust2Dplot,
mclust.options
est <- meVVV(iris[,-5], unmap(iris[,5]))
## Not run:
# par(pty = "s", mfrow = c(1,1))
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# what = "classification", main = TRUE)
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# truth = iris[,5], what = "errors", main = TRUE)
# randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
# what = "uncertainty", main = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab