data(cornHybrid)
## look at the list structure
str(cornHybrid)
############################################
############################################
# breeding values with 3 variance components
# hybrid prediction
############################################
############################################
#data(cornHybrid)
#hybrid2 <- cornHybrid$hybrid # extract cross data
#A <- cornHybrid$K
#y <- hybrid2$Yield
#X1 <- model.matrix(~ Location, data = hybrid2);dim(X1)
#Z1 <- model.matrix(~ GCA1 -1, data = hybrid2);dim(Z1)
#Z2 <- model.matrix(~ GCA2 -1, data = hybrid2);dim(Z2)
#Z3 <- model.matrix(~ SCA -1, data = hybrid2);dim(Z3)
#K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
### Realized IBS relationships for set of parents 1
#K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)
### Realized IBS relationships for set of parents 2
#S <- kronecker(K1, K2) ; dim(S)
#rownames(S) <- colnames(S) <- levels(hybrid2$SCA)
### Realized IBS relationships for cross
###(as the Kronecker product of K1 and K2)
#ETA <- list(list(Z=Z1, K=K1), list(Z=Z2, K=K2), list(Z=Z3, K=S))
### run the next line, ommited for CRAN time limitations
#ans <- mmer(y=y, X=X1, Z=ETA)
#ans$var.comp
#summary(ans)
Run the code above in your browser using DataLab