## Gaussian response + lasso penalty + aic.loss:
set.seed (1111)
n <- 200
p <- 5
X <- matrix (rnorm (n * p), ncol = p)
X[,2] <- X[,1] + rnorm (n, sd = 0.1)
X[,3] <- X[,1] + rnorm (n, sd = 0.1)
true.beta <- c (1, 2, 0, 0, -1)
y <- drop (X %*% true.beta) + rnorm (n)
cv.obj1 <- cv.lqa (y, X, intercept = TRUE,
lambda.candidates = list (c (0.001, 0.05, 1, 5, 10)), family = gaussian (),
penalty.family = lasso, n.fold = 5,
loss.func = "aic.loss")
cv.obj1
## Binary response + fused.lasso penalty + dev.loss:
n <- 100
p <- 5
set.seed (1234)
x <- matrix (rnorm (n * p), ncol = p)
x[,2] <- x[,1] + rnorm (n, sd = 0.01)
x[,3] <- x[,1] + rnorm (n, sd = 0.1)
beta <- c (1, 2, 0, 0, -1)
prob1 <- 1 / (1 + exp (drop (-x %*% beta)))
y <- sapply (prob1, function (prob1) {rbinom (1, 1, prob1)})
cv.obj2 <- cv.lqa (y, x, family = binomial (), penalty.family =
fused.lasso, lambda.candidates = list (c (0.001, 0.05, 0.5, 1, 5),
c (0.001, 0.01, 0.5)), n.fold = 5, loss.func = "dev.loss")
cv.obj2
Run the code above in your browser using DataLab