dgengamma(x, mu=0, sigma=1, Q, log = FALSE)
pgengamma(q, mu=0, sigma=1, Q, lower.tail = TRUE, log.p = FALSE)
qgengamma(p, mu=0, sigma=1, Q, lower.tail = TRUE, log.p = FALSE)
rgengamma(n, mu=0, sigma=1, Q)
Hgengamma(x, mu=0, sigma=1, Q)
hgengamma(x, mu=0, sigma=1, Q)
length(n) > 1
, the length is
taken to be the number required.dln
dgengamma
gives the density, pgengamma
gives the distribution
function, qgengamma
gives the quantile function, rgengamma
generates random deviates, Hgengamma
retuns the cumulative hazard
and hgengamma
the hazard.dgengamma.orig, for the sake of completion and
compatibility with other software - this is implicitly restricted to
Q
>0 (or k
>0 in the original notation). The parameters of
dgengamma
and dgengamma.orig
are related as
follows.
dgengamma.orig(x, shape=shape, scale=scale, k=k) =
dgengamma(x, mu=log(scale) + log(k)/shape, sigma=1/(shape*sqrt(k)), Q=1/sqrt(k))
The generalized gamma distribution simplifies to the gamma, log-normal
and Weibull distributions with the following parameterisations:
lcl {
dgengamma(x, mu, sigma, Q=0)
=
dlnorm(x, mu, sigma)
dgengamma(x, mu, sigma, Q=1)
=
dweibull(x, shape=1/sigma, scale=exp(mu))
dgengamma(x, mu, sigma, Q=sigma)
=
dgamma(x, shape=1/sigma^2, rate=exp(-mu) / sigma^2)
}
The properties of the generalized gamma and its applications to
survival analysis are discussed in detail by Cox (2007).
The generalized F distribution GenF
extends the
generalized gamma to four parameters.=0$.>
GenGamma.orig
, GenF
,
Lognormal
, GammaDist
, Weibull
.