#--------------------------------------------------------------
# random groups equating for (1) mean, (2) linear,
# (3) equipercentile, and (4) equipercentile with
# loglinear smoothing:
rx <- ACTmath[,2]
ry <- ACTmath[,3]
rscale <- ACTmath[,1]
set.seed(2007)
req1 <- equate(rx,ry,rscale,type="m",bootse=TRUE,reps=100)
req2 <- equate(rx,ry,rscale,type="l",bootse=TRUE,reps=100)
req3 <- equate(rx,ry,rscale,type="e",bootse=TRUE,reps=100)
req4 <- equate(rx,ry,rscale,type="e",bootse=TRUE,reps=100,
smooth="loglin",degree=3)
# compare equated scores and boostrap standard errors:
cbind(rscale,mean=req1$conc[,2],linear=req2$conc[,2],
equip=req3$conc[,2],equipS=req4$conc[,2])
cbind(rscale,linear=req2$see,equip=req3$see,equipS=req4$see)
#--------------------------------------------------------------
# nonequivalent groups design for (1) Tucker linear, and
# (2, 3) frequency estimation with weights of 0 and 1
nx <- KBneat$x
ny <- KBneat$y
nscale <- 0:36
neq1 <- equate(nx[,1],ny[,1],nscale,type="Linear",method="Tuck",
xv=nx[,2],yv=ny[,2],w=1,vscale=0:12)
neq2 <- equate(nx[,1],ny[,1],nscale,type="equip",method="freq",
xv=nx[,2],yv=ny[,2],w=1,vscale=0:12)
neq3 <- equate(nx[,1],ny[,1],nscale,type="equip",method="freq",
xv=nx[,2],yv=ny[,2],w=0,vscale=0:12)
# compare equated scores:
cbind(nscale,Tucker=neq1$conc[,2],FEw1=neq2$conc[,2],
FEw.0=neq3$conc[,2])
Run the code above in your browser using DataLab