# NOT RUN {
## loading data
data(data_DF1)
## Filtering standards
std<- dplyr::filter(data_DF1, data_DF1$id=="STD")
std <- aggregate(std$blankminus ~ std$concentration, FUN = mean )
colnames (std) <-c("con", "OD")
## 3-parametric regression curve fitting
fit1<-nplr::nplr(std$con,std$OD,npars=3,useLog = FALSE)
## Linear regression curve fitting
fit2<- stats::lm(formula = con ~ OD,data = std)
## Estimating the 'blankminus'
## eg:1 Based on nonparametric logistic regression fitting
estimated_nplr <- estimate(data_DF1,colname = "blankminus",fitformula = fit1,method = "nplr")
## eg:2 Based on linear regression fitting
estimated_lr<-estimate(data_DF1,colname="blankminus",fitformula=fit2,method="linear")
# }
Run the code above in your browser using DataLab