Maximum likelihood estimation for the exponential distribution.
exponential(link = "loglink", location = 0, expected = TRUE,
type.fitted = c("mean", "percentiles", "Qlink"),
percentiles = 50,
ishrinkage = 0.95, parallel = FALSE, zero = NULL)
Parameter link function applied to the positive parameter Links
for more choices.
Numeric of length 1, the known location parameter,
Logical. If TRUE
Fisher scoring is used,
otherwise Newton-Raphson. The latter is usually faster.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The family function assumes the response
Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.
amlexponential
,
gpd
,
laplace
,
expgeometric
,
explogff
,
poissonff
,
mix2exp
,
freund61
,
simulate.vlm
,
Exponential
.
# NOT RUN {
edata <- data.frame(x2 = runif(nn <- 100) - 0.5)
edata <- transform(edata, x3 = runif(nn) - 0.5)
edata <- transform(edata, eta = 0.2 - 0.7 * x2 + 1.9 * x3)
edata <- transform(edata, rate = exp(eta))
edata <- transform(edata, y = rexp(nn, rate = rate))
with(edata, stem(y))
fit.slow <- vglm(y ~ x2 + x3, exponential, data = edata, trace = TRUE)
fit.fast <- vglm(y ~ x2 + x3, exponential(exp = FALSE), data = edata,
trace = TRUE, crit = "coef")
coef(fit.slow, mat = TRUE)
summary(fit.slow)
# Compare results with a GPD. Has a threshold.
threshold <- 0.5
gdata <- data.frame(y1 = threshold + rexp(n = 3000, rate = exp(1.5)))
fit.exp <- vglm(y1 ~ 1, exponential(location = threshold), data = gdata)
coef(fit.exp, matrix = TRUE)
Coef(fit.exp)
logLik(fit.exp)
fit.gpd <- vglm(y1 ~ 1, gpd(threshold = threshold), data = gdata)
coef(fit.gpd, matrix = TRUE)
Coef(fit.gpd)
logLik(fit.gpd)
# }
Run the code above in your browser using DataLab