Learn R Programming

DiscreteFDR (version 1.2)

fast.Discrete: Fast application of discrete procedures

Description

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, without computing the critical constants, to a data set of 2 x 2 contingency tables using Fisher's exact tests.

Usage

fast.Discrete(counts, alternative = "greater", input = "noassoc",
  alpha = 0.05, direction = "su", adaptive = FALSE)

Arguments

counts

a data frame of 2 or 4 columns and any number of lines, each line representing a 2 x 2 contingency table to test. The number of columns and what they must contain depend on the value of the input argument, see Details of fisher.pvalues.support.

alternative

same argument as in fisher.test. The three possible values are "greater" (default), "two.sided" or "less" and you can specify just the initial letter.

input

the format of the input data frame, see Details of fisher.pvalues.support. The three possible values are "noassoc" (default), "marginal" or "HG2011" and you can specify just the initial letter.

alpha

the target FDR level, a number strictly between 0 and 1.

direction

a character string specifying whether to conduct a step-up (direction="su", by default) or step-down procedure (direction="sd").

adaptive

a boolean specifying whether to conduct an adaptive procedure or not.

Value

A list whose elements are:

Rejected

Rejected raw p-values

Indices

Indices of rejected hypotheses

k.hat

Number of rejections

Alpha

Maximum significance level for the transformed p-values for which a rejection occured, that is \(Alpha = alpha * k.hat / m\)

Adjusted

Adjusted p-values (only for step-down direction).

Details

This version: 2018-11-13.

Examples

Run this code
# NOT RUN {
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

DBH.su <- fast.Discrete(counts = df, input = "noassoc", direction = "su")
DBH.sd <- fast.Discrete(counts = df, input = "noassoc", direction = "sd")
DBH.sd$Adjusted
ADBH.su <- fast.Discrete(counts = df, input = "noassoc", direction = "su", adaptive = TRUE)
ADBH.sd <- fast.Discrete(counts = df, input = "noassoc", direction = "sd", adaptive = TRUE)
ADBH.sd$Adjusted

# }

Run the code above in your browser using DataLab