Learn R Programming

fda.usc (version 0.9.4)

fdata.bootstrap: Bootstrap samples of a functional statistic

Description

fdata.bootstrap provides bootstrap samples for functional data.

Usage

fdata.bootstrap(fdataobj,statistic=func.mean,alpha=0.05,nb=200,
smo=0.0,draw=FALSE,draw.control=NULL,...)

Arguments

fdataobj
fdata class object.
statistic
Sample statistic. It must be a function that returns an object of class fdata. By default, it uses sample mean func.mean. See Descriptive
alpha
Significance value.
nb
Number of bootstrap resamples.
smo
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix.
draw
=TRUE, plot the bootstrap samples and the statistic.
draw.control
list that it specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.
...
Further arguments passed to or from other methods.

Value

  • statisticfdata class object with the statistic estimate from nb bootstrap samples.
  • dbandBootstrap estimate of (1-alpha)% distance.
  • rep.distDistance from every replicate.
  • resamplesfdata class object with the bootstrap resamples.
  • fdataobjfdata class object.

References

Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481{-}496. Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063{-}1074.

See Also

See Also as Descriptive

Examples

Run this code
data(tecator)
absorp<-tecator$absorp.fdata
#No run
#Bootstrap for Trimmed Mean with depth mode
#out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
#names(out.boot)
#Bootstrap for Median with with depth mode
#control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
#out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
#draw=TRUE,draw.control=control)

Run the code above in your browser using DataLab