Learn R Programming

fda.usc (version 1.2.3)

fdata.bootstrap: Bootstrap samples of a functional statistic

Description

fdata.bootstrap provides bootstrap samples for functional data.

Usage

fdata.bootstrap(fdataobj,statistic=func.mean,alpha=0.05,
nb=200,smo=0.0,draw=FALSE,draw.control=NULL,...)

Arguments

fdataobj
fdata class object.
statistic
Sample statistic. It must be a function that returns an object of class fdata. By default, it uses sample mean func.mean. See Descriptive
alpha
Significance value.
nb
Number of bootstrap resamples.
smo
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix.
draw
=TRUE, plot the bootstrap samples and the statistic.
draw.control
list that it specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.
...
Further arguments passed to or from other methods.

Value

  • statisticfdata class object with the statistic estimate from nb bootstrap samples.
  • dbandBootstrap estimate of (1-alpha)% distance.
  • rep.distDistance from every replicate.
  • resamplesfdata class object with the bootstrap resamples.
  • fdataobjfdata class object.

Details

The fdata.bootstrap() computes a confidence ball using bootstrap in the following way:
  • Let$X_1(t),\ldots,X_n(t)$the original data and$T=T(X_1(t),\ldots,X_n(t))$the sample statistic.
  • Calculate thenbbootstrap resamples$\left{X_{1}^{*}{(t)},\cdots,X_{n}^{*}{(t)}\right}$, using the following scheme$X_{i}^{*}(t)=X_{i}(t)+Z(t)$where$Z(t)$is normally distributed with mean 0 and covariance matrix$\gamma\Sigma_x$, where$\Sigma_x$is the covariance matrix of$\left{X_1(t),\ldots,X_n(t)\right}$and$\gamma$is the smoothing parameter.
  • Let$T^{*j}=T(X^{*j}_1(t),...,X^{*j}_n(t))$the estimate using the$j$resample.
  • Compute$d(T,T^{*j})$,$j=1,\ldots,nb$. Define the bootstrap confidence ball of level$1-\alpha$as$CB(\alpha)=X\in E$such that$d(T,X)\leq d_{\alpha}$being$d_{\alpha}$the quantile$(1-\alpha)$of the distances between the bootstrap resamples and the sample estimate.
The fdata.bootstrap function allows us to define a statistic calculated on the nb resamples, control the degree of smoothing by smo argument and represent the confidence ball with level $1-\alpha$ as those resamples that fulfill the condition of belonging to $CB(\alpha)$. The statistic used by default is the mean (func.mean) but also other depth-based functions can be used (see help(Descriptive)).

References

Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481{-}496. Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063{-}1074. Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/

See Also

See Also as Descriptive

Examples

Run this code
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)

Run the code above in your browser using DataLab