fdata.bootstrap provides bootstrap samples for functional data.
fdata.bootstrap(fdataobj,statistic=func.mean,alpha=0.05,
nb=200,smo=0.0,draw=FALSE,draw.control=NULL,...)
fdata
class object.
Sample statistic. It must be a function that returns an object of class fdata
. By default, it uses sample mean func.mean
.
See Descriptive
for other statistics.
Significance value.
Number of bootstrap resamples.
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix.
=TRUE, plot the bootstrap samples and the statistic.
list that it specifies the col
, lty
and lwd
for objects: fdataobj
, statistic
, IN
and OUT
.
Further arguments passed to or from other methods.
fdata
class object with the statistic estimate from nb
bootstrap samples.
Bootstrap estimate of (1-alpha)%
distance.
Distance from every replicate.
fdata
class object with the bootstrap resamples.
fdata
class object.
The fdata.bootstrap()
computes a confidence ball using bootstrap in the following way:
Let
Calculate the nb
bootstrap resamples
Let
Compute
The fdata.bootstrap
function allows us to define a statistic calculated on the nb
resamples, control the degree of smoothing by smo
argument and represent the confidence ball with level statistic
used by default is the mean (func.mean
) but also other depth-based functions can be used (see help(Descriptive)
).
Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481-496.
Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as Descriptive
# NOT RUN {
# }
# NOT RUN {
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
# }
Run the code above in your browser using DataLab