# Simple examples with random data here
    # Real data examples in the Vignette
    # Random data: covariates A,B,C are correlated with Y
    set.seed(1)
    Y <- rnorm(20)
    X <- matrix(rnorm(200), 20, 10)
    X[,1:3] <- X[,1:3] + Y
    colnames(X) <- LETTERS[1:10]
    # Some subsets of interest
    my.sets1 <- list(abc = LETTERS[1:3], cde  = LETTERS[3:5],
                     fgh = LETTERS[6:8], hij = LETTERS[8:10])
    res <- gt(Y, X, subsets = my.sets1)
    # Simple multiple testing
    p.adjust(res)
    p.adjust(res, "BH")
    # A whole structure of sets
    my.sets2 <- as.list(LETTERS[1:10])
    names(my.sets2) <- letters[1:10]
    my.sets3 <- list(all = LETTERS[1:10])
    my.sets <- c(my.sets2,my.sets1,my.sets3)
    # Do the focus level procedure
    # Choose a focus level by hand
    my.focus <- c("abc","cde","fgh","hij")
    # Or automated
    my.focus <- findFocus(my.sets, maxsize = 8)
    resF <- focusLevel(res, sets = my.sets, focus = my.focus)
    leafNodes(resF, alpha = .1)
    # Compare
    p.adjust(resF, "holm")
    # Focus level with a custom test
    Ftest <- function(set) anova(lm(Y~X[,set]))[["Pr(>F)"]][1]
    focusLevel(Ftest, sets=my.sets, focus=my.focus)
    # analyze data using inheritance procedure
    res <- gt(Y, X, subsets = list(colnames(X)))
    # define clusters on the covariates X
    hcl=hclust(dist(t(X)))
    # Do inheritance procedure
    resI=inheritance(res, sets = hcl)
    resI
    leafNodes(resI, alpha = .1)
    # inheritance procedure with a custom test
    inheritance(Ftest, sets = hcl, Shaffer=TRUE)
Run the code above in your browser using DataLab