Learn R Programming

xps (version 1.32.0)

fitQC: Functions for fitting probe-level models

Description

This function allows to combine different algorithms to compute background correction, normalization and fit a multichip model for summarization.

Usage

fitQC(xps.data, filename = character(), filedir = getwd(), tmpdir = "", update = FALSE, # background correction bgcorrect.method  = "rma", bgcorrect.select  = "none", bgcorrect.option  = "pmonly:epanechnikov", bgcorrect.params  = c(16384), # normalization normalize.method  = "quantile", normalize.select  = "pmonly", normalize.option  = "transcript:together:none", normalize.logbase = "0", normalize.params  = c(0.0), # quality control qualify.method  = "rlm", qualify.select  = "pmonly", qualify.qualopt  = "all", qualify.option  = "transcript", qualify.estimator = "huber", qualify.logbase  = "log2", qualify.params  = list(10, 0.01, 1.0), # reference values reference.index  = 0, reference.method  = "mean", reference.params  = list(0.0), # misc. exonlevel  = "", xps.scheme = NULL, add.data  = FALSE, bufsize  = 32000, verbose  = TRUE)
xpsQualityControl(object, ...)

Arguments

xps.data
object of class DataTreeSet.
filename
file name of ROOT data file.
filedir
system directory where ROOT data file should be stored.
tmpdir
optional temporary directory where temporary ROOT files should be stored.
update
logical. If TRUE the existing ROOT data file filename will be updated.
bgcorrect.method
background method to use.
bgcorrect.select
type of probes to select for background correction.
bgcorrect.option
type of background correction to use.
bgcorrect.params
vector of parameters for background method.
normalize.method
normalization method to use.
normalize.select
type of probes to select for normalization.
normalize.option
normalization option.
normalize.logbase
logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘log10’.
normalize.params
vector of parameters for normalization method.
qualify.method
qualification method to use, currently rlm.
qualify.select
type of probes to select for qualification.
qualify.qualopt
option determining the data to which to apply qualification, one of ‘raw’, ‘adjusted’, ‘normalized’, ‘all’.
qualify.option
option determining the grouping of probes for qualification, one of ‘transcript’, ‘exon’, ‘probeset’; exon arrays only.
qualify.estimator
option determining the M-estimator to use, one of ‘huber’, ‘fair’, ‘cauchy’, ‘gemanmcclure’, ‘welsch’, ‘tukey’, ‘andrew’.
qualify.logbase
logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘log10’.
qualify.params
vector of parameters for qualification method.
reference.index
index of reference tree to use, or 0.
reference.method
for refindex=0, either trimmed mean or median of trees.
reference.params
vector of parameters for reference method.
exonlevel
exon annotation level determining which probes should be used for summarization; exon/genome arrays only.
xps.scheme
optional alternative SchemeSet.
add.data
logical. If TRUE expression data will be included as slot data.
bufsize
integer which sets the buffer size of the tree branch baskets (default is 32000).
verbose
logical, if TRUE print status information.
object
object of class DataTreeSet.
...
the arguments described above.

Value

An object of type QualTreeSet.

Details

This function allows to combine different algorithms to compute background correction, normalization and fit a multichip model for summarization.

xpsQualityControl is the DataTreeSet method called by function fitQC, containing the same parameters.

See Also

fitRLM, qualify, express

Examples

Run this code
## Not run: 
# ## load existing ROOT scheme file and ROOT data file
# scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
# data.test3 <- root.data(scheme.test3, paste(path.package("xps"),"rootdata/DataTest3_cel.root",sep="/"))
# 
# ## qualification - rlm
# rlm.all <- fitQC(data.test3, "tmp_Test3RLMall", filedir=getwd(), tmpdir="",
#                  qualify.method="rlm", qualify.qualopt="all", qualify.option="transcript", add.data=FALSE)
# 
# ## get expression data.frame
# expr.rlm.all <- validData(rlm.all)
# 
# ## get borders
# brd.rlm.all <- borders(rlm.all)
# 
# ## get residuals
# res.rlm.all <- residuals(rlm.all)
# 
# ## get weights
# w.rlm.all <- weights(rlm.all)
# 
# ## plot expression levels
# if (interactive()) {
# coiplot(rlm.all)
# borderplot(rlm.all)
# nuseplot(rlm.all)
# rleplot(rlm.all)
# image(rlm.all, type="resids")
# }
# ## End(Not run)

Run the code above in your browser using DataLab