## Not run:
# ## first, load ROOT scheme file and ROOT data file
# scheme.test3 <- root.scheme(paste(path.package("xps"),"schemes/SchemeTest3.root",sep="/"))
# data.test3 <- root.data(scheme.test3, paste(path.package("xps"),"rootdata/DataTest3_cel.root",sep="/"))
#
# ## compute RMA stepwise
#
# ## background correction
# data.bg.rma <- bgcorrect.rma(data.test3,"tmp_Test3RMABgrd",filedir=getwd())
#
# ## normalize quantiles
# data.qu.rma <- normalize.quantiles(data.bg.rma,"tmp_Test3RMANorm",filedir=getwd())
#
# ## summarize medianpolish
# data.mp.rma <- summarize.rma(data.qu.rma,"tmp_Test3RMAExpr",filedir=getwd(),tmpdir="")
#
# ## qualification - rlm
#
# ## fit model on raw data
# data.raw.rlm <- qualify.rlm(data.test3, "tmp_Test3RawQual", filedir=getwd(), tmpdir="", option="transcript", add.data=TRUE)
#
# ## fit model on background adjusted data
# data.adj.rlm <- qualify.rlm(data.bg.rma, "tmp_Test3AdjQual", filedir=getwd(), tmpdir="", option="transcript", add.data=TRUE)
#
# ## fit model on normalized data
# data.nrm.rlm <- qualify.rlm(data.qu.rma, "tmp_Test3NormQual", filedir=getwd(), tmpdir="", option="transcript", add.data=TTRUE)
#
# ## get expression levels
# expr.raw.rlm <- validData(data.raw.rlm)
# expr.adj.rlm <- validData(data.adj.rlm)
# expr.nrm.rlm <- validData(data.nrm.rlm)
#
# ## get borders
# brd.raw <- borders(data.raw.rlm)
# brd.adj <- borders(data.adj.rlm)
#
# ## get residuals
# res.raw <- residuals(data.raw.rlm)
# res.adj <- residuals(data.adj.rlm)
#
# ## get weights
# w.raw <- weights(data.raw.rlm)
# w.adj <- weights(data.adj.rlm)
# ## End(Not run)
Run the code above in your browser using DataLab