fregre.ppc(fdataobj, y, l =NULL,lambda=0,P=c(0,0,1),...)
fregre.ppls(fdataobj, y=NULL, l = NULL,lambda=0,P=c(0,0,1),...)
fdata
class object.n
.P
is a vector: P
are coefficients to define the penalty matrix object. By default P=c(0,0,1)
penalize the second derivative (curvature) or acceleration.
If P
is a matrix: P is the penalty matrix ofregre.pls
function.fdata
.y
-fitted values
.fdata2pls
function.lm
functionfdata2ppc
.
Functional (FPLS) algorithm maximizes the covariance between $\tilde{X}(t)$ and the scalar response $Y$ via the partial least squares (PLS) components. The functional penalized PLS are calculated in fdata2ppls
by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).
Let $\left{\tilde{\nu}_k\right}_{k=1}^{\infty}$ the functional PLS components and $\tilde{X}_i(t)=\sum_{k=1}^{\infty}\tilde{\gamma}_{ik}\tilde{\nu}_k$ and $\beta(t)=\sum_{k=1}^{\infty}\tilde{\beta}_k\tilde{\nu}_k$. The functional linear model is estimated by:
$$\hat{y}=\big< \tilde{X},\hat{\beta} \big> \approx \sum_{k=1}^{k_n}\tilde{\gamma}_{k}\tilde{\beta}_k$$P.penalty
, fregre.ppc.cv
and fregre.ppls.cv
.
Alternative method: fregre.pc
, and fregre.pls
.# data(tecator)
# x<-tecator$absorp.fdata
# y<-tecator$y$Fat
# res=fregre.ppc(x,y,c(1:8))
# summary(res)
# res2=fregre.ppls(x,y,c(1:8))
# summary(res2)
Run the code above in your browser using DataLab