A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.
ft_ngram(x, input_col, output_col, n = 2L, uid = random_string("ngram_"),
  ...)A spark_connection, ml_pipeline, or a tbl_spark.
The name of the input column.
The name of the output column.
Minimum n-gram length, greater than or equal to 1. Default: 2, bigram features
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns a ml_transformer,
  a ml_estimator, or one of their subclasses. The object contains a pointer to
  a Spark Transformer or Estimator object and can be used to compose
  Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
  the transformer or estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, a transformer is constructed then
  immediately applied to the input tbl_spark, returning a tbl_spark
When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer,
  ft_bucketizer,
  ft_chisq_selector,
  ft_count_vectorizer, ft_dct,
  ft_elementwise_product,
  ft_feature_hasher,
  ft_hashing_tf, ft_idf,
  ft_imputer,
  ft_index_to_string,
  ft_interaction, ft_lsh,
  ft_max_abs_scaler,
  ft_min_max_scaler,
  ft_normalizer,
  ft_one_hot_encoder, ft_pca,
  ft_polynomial_expansion,
  ft_quantile_discretizer,
  ft_r_formula,
  ft_regex_tokenizer,
  ft_sql_transformer,
  ft_standard_scaler,
  ft_stop_words_remover,
  ft_string_indexer,
  ft_tokenizer,
  ft_vector_assembler,
  ft_vector_indexer,
  ft_vector_slicer, ft_word2vec