Indexing categorical feature columns in a dataset of Vector.
ft_vector_indexer(x, input_col, output_col, max_categories = 20L,
  dataset = NULL, uid = random_string("vector_indexer_"), ...)A spark_connection, ml_pipeline, or a tbl_spark.
The name of the input column.
The name of the output column.
Threshold for the number of values a categorical feature can take. If a feature is found to have > max_categories values, then it is declared continuous. Must be greater than or equal to 2. Defaults to 20.
(Optional) A tbl_spark. If provided, eagerly fit the (estimator)
feature "transformer" against dataset. See details.
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns a ml_transformer,
  a ml_estimator, or one of their subclasses. The object contains a pointer to
  a Spark Transformer or Estimator object and can be used to compose
  Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
  the transformer or estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, a transformer is constructed then
  immediately applied to the input tbl_spark, returning a tbl_spark
When dataset is provided for an estimator transformer, the function
  internally calls ml_fit() against dataset. Hence, the methods for
  spark_connection and ml_pipeline will then return a ml_transformer
  and a ml_pipeline with a ml_transformer appended, respectively. When
  x is a tbl_spark, the estimator will be fit against dataset before
  transforming x.
When dataset is not specified, the constructor returns a ml_estimator, and,
  in the case where x is a tbl_spark, the estimator fits against x then
  to obtain a transformer, which is then immediately used to transform x.
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer,
  ft_bucketizer,
  ft_chisq_selector,
  ft_count_vectorizer, ft_dct,
  ft_elementwise_product,
  ft_feature_hasher,
  ft_hashing_tf, ft_idf,
  ft_imputer,
  ft_index_to_string,
  ft_interaction, ft_lsh,
  ft_max_abs_scaler,
  ft_min_max_scaler, ft_ngram,
  ft_normalizer,
  ft_one_hot_encoder, ft_pca,
  ft_polynomial_expansion,
  ft_quantile_discretizer,
  ft_r_formula,
  ft_regex_tokenizer,
  ft_sql_transformer,
  ft_standard_scaler,
  ft_stop_words_remover,
  ft_string_indexer,
  ft_tokenizer,
  ft_vector_assembler,
  ft_vector_slicer, ft_word2vec