## apply to normal data (fitDRModel leads to the same results)
data(biom)
## produce first stage fit (using dose as factor)
anMod <- lm(resp~factor(dose)-1, data=biom)
drFit <- coef(anMod)
vCov <- vcov(anMod)
dose <- sort(unique(biom$dose))
## now fit an emax model to these estimates
gfit <- gFitDRModel(dose, drFit, vCov, model = "emax",
bnds = c(0.01, 2))
## a lot of things can be done
print(gfit)
predict(gfit)
coef(gfit)
plot(gfit)
## example for binary data (migraine)
data(migraine)
PFrate <- migraine$painfree/migraine$ntrt
doseVec <- migraine$dose
doseVecFac <- as.factor(migraine$dose)
## fit logistic regression with dose as factor
logfit <- glm(PFrate~doseVecFac-1, family = binomial, weights = migraine$ntrt)
drEst <- coef(logfit)
vCov <- vcov(logfit)
## now fit an Emax model (on logit scale)
gfit <- gFitDRModel(doseVec, drEst, vCov, model = "emax", bnds = c(0,300))
## model fit on logit scale
plot(gfit)
Run the code above in your browser using DataLab