Gene counting for haplotype analysis with missing data
genecounting(data,weight=NULL,loci=NULL,control=gc.control())genotype table
a column of frequency weights
an array containing number of alleles at each locus
is a function with the following arguments:
xdata. a flag indicating if the data involves X chromosome, if so, the first column of data indicates sex of each subject: 1=male, 2=female. The marker data are no different from the autosomal version for females, but for males, two copies of the single allele present at a given locus.
convll. set convergence criteria according to log-likelihood, if its value set to 1
handle.miss. to handle missing data, if its value set to 1
eps. the actual convergence criteria, with default value 1e-5
tol. tolerance for genotype probabilities with default value 1e-8
maxit. maximum number of iterations, with default value 50
pl. criteria for trimming haplotypes according to posterior probabilities
assignment. filename containing haplotype assignment
verbose. If TRUE, yields print out from the C routine
The returned value is a list containing:
haplotype frequency estimates under linkage disequilibrium (LD)
haplotype frequency estimates under linkage equilibrium (no LD)
genotype probability estimates
log-likelihood under linkage equilibrium
log-likelihood under linkage disequilibrium
unique haplotype identifier (defunct, see gc.em)
number of parameters according user-given alleles
number of parameters according to observed
design matrix for haplotype trend regression (defunct, see gc.em)
number of iterations used in gene counting
a flag indicating convergence status of gene counting
haplotype diversity under no LD, defined as
haplotype diversity under LD, defined as
residuals in terms of frequency weights = o - e
Zhao, J. H., Lissarrague, S., Essioux, L. and P. C. Sham (2002). GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 18(12):1694-1695
Zhao, J. H. and P. C. Sham (2003). Generic number systems and haplotype analysis. Comp Meth Prog Biomed 70: 1-9
Zhao, J. H. (2004). 2LD, GENECOUNTING and HAP: Computer programs for linkage disequilibrium analysis. Bioinformatics, 20, 1325-1326
# NOT RUN {
require(gap.datasets)
# HLA data
data(hla)
hla.gc <- genecounting(hla[,3:8])
summary(hla.gc)
hla.gc$l0
hla.gc$l1
# ALDH2 data
data(aldh2)
control <- gc.control(handle.miss=1,assignment="ALDH2.out")
aldh2.gc <- genecounting(aldh2[,3:6],control=control)
summary(aldh2.gc)
aldh2.gc$l0
aldh2.gc$l1
# Chromosome X data
# assuming allelic data have been extracted in columns 3-13
# and column 3 is sex
filespec <- system.file("tests/genecounting/mao.dat")
mao2 <- read.table(filespec)
dat <- mao2[,3:13]
loci <- c(12,9,6,5,3)
contr <- gc.control(xdata=TRUE,handle.miss=1)
mao.gc <- genecounting(dat,loci=loci,control=contr)
mao.gc$npusr
mao.gc$npdat
# }
Run the code above in your browser using DataLab