pairs-DEDS produces pairs plots of statistics or p
   values for DEDS-class objects.
"pairs"(x, subset=c(1:nrow(x$stats)), labels =
colnames(x$stats[,-1]), logit = FALSE,
diagonal = c("qqnorm", "boxplot", "density", "histogram", "none"),
lower = c("cor", "none"), groups.by.deds = TRUE, thresh = 0.05, reg.line
= NULL, smooth = FALSE, line.by.group = FALSE, diag.by.group = TRUE, lower.by.group =
FALSE, col = palette(), pch = 1:n.groups, lwd = 1, legend.plot =
length(levels(groups)) > 1, ...)DEDS.TRUE the variables are
    logged, useful when plotting p values.| lower="cor": | 
| absolute correlation will be put on the lower panel | 
TRUE, points will
    be separated into groups according to their magnitude of q- or p-values
    by DEDS. thresh<1, it="" specifies="" the="" threshold="" of="" significance="" in="" differential="" expression="" (de)="" for="" q-="" or="" p-values="" deds="" object;="" default is="" set="" at="" 0.05.="" if="" thresh>1, it specifies the number of top DE genes to be
    highlighted. 1,>reg.line=lm,
    linear regression line will be plotted; If reg.line=NULL, no
    regression line will be plotted in the scatter plot.smooth=TRUE, a
  lowess line will be applied.lower.by.group=TRUE and lower="cor", correlation
    coefficients will be calculated and printed separated according to
    groups in the lower panels.par.par.par.pairs.DEDS implements a S3 method of
  pairs for DEDS. The DEDS
  class is a simple list-based class to store DEDS results and it is
  usually created  by functions deds.pval,
  deds.stat, deds.stat.linkC. The list
  contains a "stat" component, which stores statistics or p values from
  various statistical tests. The function pairs.DEDS extracts the
  "stat" component and produces a matrix of scatterplot.  pairs.DEDS as a default highlights points (corresponding to
  genes) with adjusted p- or q-values less than a user defined
  threshold. The user can select among a series of options a plot for
  the diagonal panel; as a default, it produces a qqnorm
  for each column in the "stat" matrix. Both the diagonal and lower
  panels can be stratified by specifying the diag.by.group or
  lower.by.group arguments.
deds.stat, deds.pval,
  deds.stat.linkC, hist.DEDS,
  qqnorm.DEDSX <- matrix(rnorm(1000,0,0.5), nc=10)
L <- rep(0:1,c(5,5))
# genes 1-10 are differentially expressed
X[1:10,6:10]<-X[1:10,6:10]+1
# DEDS
d <- deds.stat.linkC(X, L, B=200)
# pairs plot
pairs(d)
# plot regression line
pairs(d, reg.line=lm, lwd=2)
# histogram in the diagonal panel
pairs(d, diagonal="hist")
# boxplot on the diagonal panel and stratified
pairs(d, diagonal="boxplot", diag.by.group=TRUE)
Run the code above in your browser using DataLab