# Simple examples with random data here
    # Real data examples in the Vignette
    # Random data: covariates A,B,C are correlated with Y
    set.seed(1)
    Y <- rnorm(20)
    X <- matrix(rnorm(200), 20, 10)
    X[,1:3] <- X[,1:3] + Y
    colnames(X) <- LETTERS[1:10]
    # Compare the global test with the F-test
    gt(Y, X)
    anova(lm(Y~X))
    # Using formula input
    res <- gt(Y, ~A+B, null=~C+E, data=data.frame(X))
    summary(res)
    # Beware: null models with and without intercept
    Z <- rnorm(20)
    summary(gt(Y, X, null=~Z))
    summary(gt(Y, X, null=Z))
    # Logistic regression
    gt(Y>0, X)
    # Subsets and weights (1)
    my.sets <- list(c("A", "B"), c("C","D"), c("D", "E"))
    gt(Y, X, subsets = my.sets)
    my.weights <- list(1:2, 2:1, 3:2)
    gt(Y, X, subsets = my.sets, weights=my.weights)
    # Subsets and weights (2)
    gt(Y, X, subset = c("A", "B"))
    gt(Y, X, subset = c("A", "A", "B"))
    gt(Y, X, subset = c("A", "A", "B"), weight = c(.5,.5,1))
    # Permutation testing
    summary(gt(Y, X, perm=1e4))
Run the code above in your browser using DataLab