gtKEGG (response, exprs, ..., id, annotation, probe2entrez, multtest = c("Holm", "BH", "BY"), sort = TRUE)
gtGO (response, exprs, ..., id, annotation, probe2entrez, ontology = c("BP", "CC", "MF"), minsize=1, maxsize=Inf, multtest = c("Holm", "focuslevel", "BH", "BY"), focuslevel = 10, sort = TRUE)
gtConcept (response, exprs, ..., annotation, probe2entrez, conceptmatrix, concept2name = "conceptID2name.txt", entrez2concept = "entrezGeneToConceptID.txt", threshold = 1e-4, share = TRUE, multtest = c("Holm", "BH", "BY"), sort = TRUE)
gtBroad (response, exprs, ..., id, annotation, probe2entrez, collection, category = c("c1", "c2", "c3", "c4", "c5"), multtest = c("Holm", "BH", "BY"), sort = TRUE)response argument of gt.ExpressionSet or
      matrix. Passed on to the alternative argument of
      gt.gt.probe2entrez must be supplied. If annotation is missing, the function will  attempt to retrieve the annotation information from the exprs argument.gtGO also the focus level method is available. See focusLevel.TRUE, sorts the results to increasing p-values.findFocus is called with maxsize at the specified level to find a focus level.getBroadSets.TRUE, the function divides the importance weight of a gene over all probes corresponding to the same entrez identifier. If FALSE, all probes get the full importance weight of the gene.The four functions use different databases for testing. gtKEGG and gtGO use KEGG (http://www.genome.jp/kegg) and GO (http://www.geneontology.org); gtConcept uses the Anni database (http://www.biosemantics.org/anni), and gtBroad uses the MSigDB database (http://www.broadinstitute.org/gsea/msigdb). The gtConcept function differs from the other three in that it uses association weights between 0 and 1 for genes within sets, rather than having a hard cut-off for membership of a gene in a set.
All functions require that annotate and the appropriate annotation packages are installed. gtKEGG additionally requires the KEGG.db package; gtGO requires the GO.db package; gtBroad requires the user to download the XML file "msigdb_v2.5.xml"
from \ http://www.broad.mit.edu/gsea/downloads.jsp, and to preprocess that file using the getBroadSets function. gtConcept requires files that can be downloaded from http://biosemantics.org/index.php/software/weighted-global-test.
Goeman, Oosting, Cleton-Jansen, Anninga and Van Houwelingen (2005). Testing association of a pathway with survival using gene expression data. Bioinformatics 21 (9) 1950-1957.
gt function. The gt.object and useful functions associated with that object.