Learn R Programming

iCluster (version 2.1.0)

iCluster2: A variant of the iCluster method with variance weighted shrinkage

Description

iCluster function with variance-weighted shrinkage (see Shen et al. PLoS ONE, 2012)

Usage

iCluster2(datasets, k, lambda=NULL, scale=T, scalar=F, max.iter=10, verbose=T)

Arguments

datasets
A list containing data matrices. For each data matrix, the rows represent samples, and the columns represent genomic features.
k
Number of classes for the samples.
lambda
Penalty term for the coefficient matrix of the iCluster model.
scalar
Logical value. If true, a degenerate version assuming scalar covariance matrix is used.
max.iter
maximum iteration for the EM algorithm
scale
Logical value. If true, data matrix is column centered
verbose
Logical value. If true, print message.

Value

A list with the following elements.
expZ
Latent variable matrix
W
The iCluster model coefficient matrix
PSI
The estimated covariance matrix
clusters
Cluster indicator for samples

References

Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.

Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236

See Also

tune.iCluster2, plotiCluster, compute.pod, plotHeatmap

Examples

Run this code
library(iCluster)
library(caTools, lib.loc="/apps/Rlib64/")
library(gdata, lib.loc="/apps/Rlib64/")
library(gtools, lib.loc="/apps/Rlib64/")
library(gplots, lib.loc="/apps/Rlib64/")
library(lattice, lib.loc="/apps/Rlib64/")
data(gbm)

#setting the penalty parameter lambda=0 returns non-sparse fit
#fit=iCluster2(datasets=gbm, k=3, lambda=list(0.44,0.33,0.28))

#plotiCluster(fit=fit, label=rownames(gbm[[1]]))

#compute.pod(fit)

#data(coord)
#chr=coord[,1]
#plotHeatmap(fit=fit, data=gbm, feature.order=c(FALSE,TRUE,TRUE),
#sparse=c(FALSE,TRUE,TRUE),plot.chr=c(TRUE,FALSE,FALSE), chr=chr)

Run the code above in your browser using DataLab