Last chance! 50% off unlimited learning
Sale ends in
Performs K-fold cross validation for the integrative sparse canonical correlation analysis over a grid of values for the regularization parameter mu1, mu2, mu3 and mu4.
iscca.cv(x, y, L, K = 5, mu1, mu2, mu3, mu4, eps = 1e-04,
pen1 = "homogeneity", pen2 = "magnitude", scale.x = TRUE,
scale.y = TRUE, maxstep = 50, submaxstep = 10)
list of data matrices, L datasets of explanatory variables.
list of data matrices, L datasets of dependent variables.
numeric, number of datasets.
numeric, number of cross-validation folds. Default is 5.
numeric, the feasible set of sparsity penalty parameter for vector u.
numeric, the feasible set of contrasted penalty parameter for vector u.
numeric, the feasible set of sparsity penalty parameter for vector v.
numeric, the feasible set of contrasted penalty parameter for vector v.
numeric, the threshold at which the algorithm terminates.
character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.
character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.
character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
numeric, maximum iteration steps. The default value is 50.
numeric, maximum iteration steps in the sub-iterations. The default value is 10.
An 'iscca.cv' object that contains the list of the following items.
x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
mu1: the sparsity penalty parameter selected from the feasible set of parameter mu1 provided by users.
mu2: the contrasted penalty parameter selected from the feasible set of parameter mu2 provided by users.
mu3: the sparsity penalty parameter selected from the feasible set of parameter mu3 provided by users.
mu4: the contrasted penalty parameter selected from the feasible set of parameter mu4 provided by users.
fold: The fold assignments for cross-validation for each observation.
loading.x: the estimated canonical vector of variables x with selected tuning parameters.
loading.y: the estimated canonical vector of variables y with selected tuning parameters.
variable.x: the screening results of variables x.
variable.y: the screening results of variables y.
meanx: list of numeric vectors, column mean of the original datasets x.
normx: list of numeric vectors, column standard deviation of the original datasets x.
meany: list of numeric vectors, column mean of the original datasets y.
normy: list of numeric vectors, column standard deviation of the original datasets y.
See Also as iscca
.
# NOT RUN {
# Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- c(0.2, 0.4)
mu3 <- 0.4
mu2 <- mu4 <- 2.5
res_homo_m <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
mu4 = mu4, eps = 1e-2, pen1 = "homogeneity", pen2 = "magnitude",
scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)
res_homo_s <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
mu4 = mu4, eps = 1e-2, pen1 = "homogeneity", pen2 = "sign",
scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)
mu1 <- mu3 <- c(0.1, 0.3)
mu2 <- mu4 <- 2
res_hete_m <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
mu4 = mu4, eps = 1e-2, pen1 = "heterogeneity", pen2 = "magnitude",
scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)
res_hete_s <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
mu4 = mu4, eps = 1e-2, pen1 = "heterogeneity", pen2 = "sign",
scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)
# }
Run the code above in your browser using DataLab