iterNPC(P, tol = 1, maxIter = 10, plotIt = TRUE, combFun1 = function(x) { -2 * sum(log(x), na.rm = TRUE) }, combFun2 = function(x) { sum(qnorm(1 - x), na.rm = TRUE) }, combFun3 = function(x) { -min(x, na.rm = TRUE) }, test = c("SSQ", "ABS", "NORM2", "EDF"), Pmat = FALSE, onlyCombined = FALSE)
matrix
containing the test
statistic in the form of p.values (permutation or
asymptotic)integer
representing the desired
tolerance, the actual one being
$tol/B$ where $B$ is the number of
permutationsinteger
maximum number of
iterations to be performed, default 10logical
, if TRUE
(default)
plots the diagnostic grahp of $p$-values obtained with
each combining function vs. iteration indexfunction
needed
for the algorithm, default is Fisher's: $-2 * sum(log(p_i))$function
, default
is Liptak: $sum(\Phi^{-1} (1-p_i))$function
, default
is Tippett: $-min_i p_i$character
, it is the stopping rule
used to check for convergence, each one of the 4 kinds
currently implemented takes as input the vector with the
result of the combination with the different combining
functions for one permutation. There are 4 choices for
this argument: "SSQ"
"ABS"
"NORM2"
"EDF"
logical
, if TRUE
returns the
final matrix of combined $p$-values, default is
FALSE
logical
, if TRUE
returns only the first column of the final matrix, in
case only the distribution of combined $p$-values is
neededlist
containing only the element
"P.iter"
: a matrix
with 3 columns
containing the observed p.values across iterations and
for all combining functions (to manually check
convergence). If Pmat
is TRUE
than the
list contains also the element "P.final"
that is
the final permutation space of p.values obtained with all
combining function. If onlyCombined
is
TRUE
than the resulting output is just the vector
containing the first column of "P.final"
.