kcopula(x, H, hs, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points,
binned=FALSE, bgridsize, w, verbose=FALSE, marginal="kernel")
kcopula.de(x, H, Hfun, hs, gridsize, gridtype, xmin, xmax, supp=3.7,
eval.points, binned=FALSE, bgridsize, w, verbose=FALSE, compute.cont=FALSE,
approx.cont=TRUE, boundary.supp, marginal="kernel", Hfun.pilot="dscalar")
Hpi.kcde
or
hpi.kcde
or hpi
is called by default.Hpi
is the
default. This is called only when H
is missing.Hpi
kcopula
, is an object of
class kcopula
. A kernel copula density estimate, output from
kcopula.de
, is an object of class kde
. These two classes
of objects have the same fields as kcde
and kde
objects
respectively, except forkcopula.de
only)H
is missing, the default
is Hpi.kcde
; if hs
are missing, the default is
hpi.kcde
.
For kernel copula density estimates, for those points which are in
the interior region, the usual normal kernel density estimator
(kde
) is used. For those points in the boundary region,
a product beta kernel based on the boundary corrected univariate beta
kernel of Chen (1999) is used. If H
is missing, the default
is Hpi.kcde
; if hs
are missing, the default is
hpi
.
The effective support, binning, grid size, grid range parameters are
the same as for kde
.Chen, S.X. (1999). Beta kernel estimator for density functions. Computational Statistics & Data Analysis, 31, 131--145.
kcde
, kde
library(MASS)
data(fgl)
x <- fgl[,c("RI", "Na")]
Chat <- kcopula(x=x)
plot(Chat, disp="persp", thin=3, col="white", border=1)
##chat <- kcopula.de(x=x)
##plot(chat, disp="persp", thin=3, theta=40, phi=30, col="white", border=1)
Run the code above in your browser using DataLab