# data setup
data(Haberman)
# check dimensions
dim(Haberman$X); length(Haberman$y)
# standardize the predictors
Haberman$X = scale(Haberman$X, center=TRUE, scale=TRUE)
# a grid of tuning parameters
lambda = 10^(seq(-3, 3, length.out=10))
# fit a linear DWD
kern = vanilladot()
DWD_linear = kerndwd(Haberman$X, Haberman$y, kern,
qval=1, lambda=lambda, eps=1e-5, maxit=1e5)
# fit a DWD using Gaussian kernel
kern = rbfdot(sigma=1)
DWD_Gaussian = kerndwd(Haberman$X, Haberman$y, kern,
qval=1, lambda=lambda, eps=1e-5, maxit=1e5)
Run the code above in your browser using DataLab