k * (1 + d) params.k (i.e., num_components) represents the number of component
OneHotCategorical distributions and d (i.e., event_size) represents the
number of categories within each OneHotCategorical distribution.
layer_categorical_mixture_of_one_hot_categorical(
object,
event_size,
num_components,
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
sample_dtype = NULL,
validate_args = FALSE,
...
)Model or layer object
Scalar integer representing the size of single draw from this distribution.
Scalar integer representing the number of mixture
components. Must be at least 1. (If num_components=1, it's more
efficient to use the OneHotCategorical layer.)
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample.
dtype of samples produced by this distribution.
Default value: NULL (i.e., previous layer's dtype).
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.
Additional arguments passed to args of keras::create_layer.
a Keras layer
Typical choices for convert_to_tensor_fn include:
tfp$distributions$Distribution$sample
tfp$distributions$Distribution$mean
tfp$distributions$Distribution$mode
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers:
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l(),
layer_one_hot_categorical()