A mixture distribution Keras layer, with independent normal components.
layer_mixture_normal(
object,
num_components,
event_shape = list(),
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
validate_args = FALSE,
...
)Model or layer object
Number of component distributions in the mixture distribution.
integer vector Tensor representing the shape of single
draw from this distribution.
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample.
Logical, default FALSE. When TRUE distribution parameters are checked
for validity despite possibly degrading runtime performance. When FALSE invalid inputs may
silently render incorrect outputs. Default value: FALSE.
@param ... Additional arguments passed to args of keras::create_layer.
Additional arguments passed to args of keras::create_layer.
a Keras layer
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical(),
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l(),
layer_one_hot_categorical()