LDA(x, fac, retain, ...)# S3 method for default
LDA(x, fac, retain, ...)
# S3 method for PCA
LDA(x, fac, retain = 0.99, verbose = TRUE, ...)
x
any Coe object (or a matrix)
fac
grouping factor used
removed
ids of columns in the original matrix that have been removed since constant (if any)
mod
the raw lda mod from lda
mod.pred
the predicted model using x and mod
CV.fac
cross-validated classification
CV.tab
cross-validation tabke
CV.correct
proportion of correctly classified individuals
CV.ce
class error
LDs
unstandardized LD scores see Claude (2008)
mshape
mean values of coefficients in the original matrix
method
inherited from the Coe object (if any)
CLUST
,
KMEANS
, MANOVA_PW
,
MANOVA
, PCA
data(bot)
bot.f <- efourier(bot, 24)
bot.p <- PCA(bot.f)
LDA(bot.p, 'type', retain=0.99) # retains 0.99 of the total variance
LDA(bot.p, 'type', retain=5) # retain 5 axis
bot.l <- LDA(bot.p, 'type', retain=0.99)
bot.l
plot(bot.l)
bot.f$fac$plop <- factor(rep(letters[1:4], each=10))
bot.l <- LDA(PCA(bot.f), 'plop')
bot.l
plot(bot.l)
Run the code above in your browser using DataLab