Learn R Programming

HIMA: High-dimensional Mediation Analysis

HIMA is an R package for estimating and testing high-dimensional mediation effects in omic studies.

Installation

HIMA is now available in R CRAN repository

## Install HIMA
install.packages("HIMA")

To install from GitHub

## Install HIMA from GitHub
library(devtools)
install_github("yinanzheng/HIMA")

If package "qvalue" is not found, please first install "qvalue" package through Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/qvalue.html

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("qvalue")

Documentation

Explore the tutorial for the HIMA package, which provides detailed usage examples and guidelines, at the following tutorial link:

HIMA Tutorial

Citation:

  1. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L,

Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. 2016. DOI: 10.1093/bioinformatics/btw351. PMID: 27357171; PMCID: PMC5048064

  1. Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators.

Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823

  1. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation effect selection in high-dimensional and compositional microbiome data.

Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955

  1. Zhang H, Chen J, Li Z, Liu L. Testing for mediation effect with application to human microbiome data.

Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450

  1. Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L. HIMA2: high-dimensional mediation analysis and its application in epigenome-wide DNA methylation data.

BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002

  1. Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth

Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903

  1. Bai X, Zheng Y, Hou L, Zheng C, Liu L, Zhang H. An Efficient Testing Procedure for High-dimensional Mediators with FDR Control.

Statistics in Biosciences. 2024. DOI: 10.1007/s12561-024-09447-4.

Contact package maintainer:

Yinan Zheng

Email: y-zheng@northwestern.edu

Copy Link

Version

Install

install.packages('HIMA')

Monthly Downloads

438

Version

2.3.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Yinan Zheng

Last Published

January 27th, 2025

Functions in HIMA (2.3.1)

SurvivalData

Survival Outcome Dataset for HIMA Demo
hima

High-dimensional Mediation Analysis
QuantileData

Quantile Mediation Dataset for HIMA Demo
hima_dblasso

High-dimensional mediation analysis with de-biased lasso penalty
hima_classic

Classic high-dimensional mediation analysis
ContinuousOutcome

Continuous Outcome Dataset for HIMA Demo
MicrobiomeData

Compositional Mediator Dataset for HIMA Demo
BinaryOutcome

Binary Outcome Dataset for HIMA Demo
HIMA-package

High-Dimensional Mediation Analysis for 'Omic' Data
hima_efficient

Efficient high-dimensional mediation analysis
hima_microbiome

High-dimensional mediation analysis for compositional microbiome data
hima_quantile

High-dimensional quantile mediation analysis
hima_survival

High-dimensional mediation analysis for survival data