lmrexp
exponential
lmrgam
gamma
lmrgev
generalized extreme-value
lmrglo
generalized logistic
lmrgpa
generalized Pareto
lmrgno
generalized normal
lmrgum
Gumbel (extreme-value type I)
lmrkap
kappa
lmrln3
three-parameter lognormal
lmrnor
normal
lmrpe3
Pearson type III
lmrwak
Wakeby
lmrwei
Weibull
}lmrexp(para = c(0, 1), nmom = 2)
lmrgam(para = c(1, 1), nmom = 2)
lmrgev(para = c(0, 1, 0), nmom = 3)
lmrglo(para = c(0, 1, 0), nmom = 3)
lmrgno(para = c(0, 1, 0), nmom = 3)
lmrgpa(para = c(0, 1, 0), nmom = 3)
lmrgum(para = c(0, 1), nmom = 2)
lmrkap(para = c(0, 1, 0, 0), nmom = 4)
lmrln3(para = c(0, 0, 1), nmom = 3)
lmrnor(para = c(0, 1), nmom = 2)
lmrpe3(para = c(0, 1, 0), nmom = 3)
lmrwak(para = c(0, 1, 0, 0, 0), nmom = 5)
lmrwei(para = c(0, 1, 0), nmom = 3)
lmrp
to compute $L$-moments of a general distribution
specified by its cumulative distribution function or quantile function.
samlmu
to compute $L$-moments of a data sample.
pelexp
, etc., to compute the parameters
of a distribution given its $L$-moments.
For individual distributions, see their cumulative distribution functions:
cdfexp
exponential
cdfgam
gamma
cdfgev
generalized extreme-value
cdfglo
generalized logistic
cdfgpa
generalized Pareto
cdfgno
generalized normal
cdfgum
Gumbel (extreme-value type I)
cdfkap
kappa
cdfln3
three-parameter lognormal
cdfnor
normal
cdfpe3
Pearson type III
cdfwak
Wakeby
cdfwei
Weibull
}# Compare sample L-moments of Ozone from the airquality data
# with the L-moments of a GEV distribution fitted to the data
data(airquality)
smom <- samlmu(airquality$Ozone, nmom=6)
gevpar <- pelgev(smom)
pmom <- lmrgev(gevpar, nmom=6)
print(smom)
print(pmom)
Run the code above in your browser using DataLab