meE(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meV(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meEII(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meVII(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meEEI(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meVEI(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meEVI(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meVVI(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meEEE(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meEEV(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meVEV(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
meVVV(data, z, prior=NULL, control=emControl(),
Vinv=NULL, warn=NULL, ...)
[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.emControl()
.hypvol
w.Mclust$warn
.do.call
.[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture."info"
Information on the iteration."WARNING"
An appropriate warning if problems are encountered in the computations.em
,
me
,
estep
,
mclustOptions
meVVV(data = iris[,-5], z = unmap(iris[,5]))
Run the code above in your browser using DataLab