#---------------
# TEST
#---------------
dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resEx <- mfsc(X,3,30,0.6,0.6)
#-----------------
# DEMO1: Toy Data
#-----------------
n = 1000
l= 100
p = 10
dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]]
gclab <- rep.int(0,l)
gllab <- rep.int(0,n)
clab <- as.character(1:l)
llab <- as.character(1:n)
for (i in 1:p){
for (j in ZC[i]){
clab[j] <- paste(as.character(i),"_",clab[j],sep="")
}
for (j in LC[i]){
llab[j] <- paste(as.character(i),"_",llab[j],sep="")
}
gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i
gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i
}
groups <- gclab
#### MFSC
resToy4 <- mfsc(X,13,100,0.6,0.6)
extractPlot(resToy4,ti="MFSC",Y=Y)
raToy4 <- extractBic(resToy4,thresZ=0.01,thresL=0.05)
if ((raToy4$bic[[1]][1]>1) && (raToy4$bic[[1]][2])>1) {
plotBicluster(raToy4,1)
}
if ((raToy4$bic[[2]][1]>1) && (raToy4$bic[[2]][2])>1) {
plotBicluster(raToy4,2)
}
if ((raToy4$bic[[3]][1]>1) && (raToy4$bic[[3]][2])>1) {
plotBicluster(raToy4,3)
}
if ((raToy4$bic[[4]][1]>1) && (raToy4$bic[[4]][2])>1) {
plotBicluster(raToy4,4)
}
colnames(X(resToy4)) <- clab
rownames(X(resToy4)) <- llab
plot(resToy4,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy4,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy4,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)
#------------------------------------------
# DEMO2: Laura van't Veer's gene expression
# data set for breast cancer
#------------------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Breast_A)
X <- as.matrix(XBreast)
resBreast4 <- mfsc(X,5,100,0.6,0.6)
extractPlot(resBreast4,ti="MFSC Breast cancer(Veer)")
raBreast4 <- extractBic(resBreast4,thresZ=0.01,thresL=0.05)
if ((raBreast4$bic[[1]][1]>1) && (raBreast4$bic[[1]][2])>1) {
plotBicluster(raBreast4,1)
}
if ((raBreast4$bic[[2]][1]>1) && (raBreast4$bic[[2]][2])>1) {
plotBicluster(raBreast4,2)
}
if ((raBreast4$bic[[3]][1]>1) && (raBreast4$bic[[3]][2])>1) {
plotBicluster(raBreast4,3)
}
if ((raBreast4$bic[[4]][1]>1) && (raBreast4$bic[[4]][2])>1) {
plotBicluster(raBreast4,4)
}
plot(resBreast4,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast4,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
}
#-----------------------------------
# DEMO3: Su's multiple tissue types
# gene expression data set
#-----------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Multi_A)
X <- as.matrix(XMulti)
resMulti4 <- mfsc(X,5,100,0.6,0.6)
extractPlot(resMulti4,ti="MFSC Multiple tissues(Su)")
raMulti4 <- extractBic(resMulti4,thresZ=0.01,thresL=0.05)
if ((raMulti4$bic[[1]][1]>1) && (raMulti4$bic[[1]][2])>1) {
plotBicluster(raMulti4,1)
}
if ((raMulti4$bic[[2]][1]>1) && (raMulti4$bic[[2]][2])>1) {
plotBicluster(raMulti4,2)
}
if ((raMulti4$bic[[3]][1]>1) && (raMulti4$bic[[3]][2])>1) {
plotBicluster(raMulti4,3)
}
if ((raMulti4$bic[[4]][1]>1) && (raMulti4$bic[[4]][2])>1) {
plotBicluster(raMulti4,4)
}
plot(resMulti4,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti4,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
}
#-----------------------------------------
# DEMO4: Rosenwald's diffuse large-B-cell
# lymphoma gene expression data set
#-----------------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(DLBCL_B)
X <- as.matrix(XDLBCL)
resDLBCL4 <- mfsc(X,5,100,0.6,0.6)
extractPlot(resDLBCL4,ti="MFSC Lymphoma(Rosenwald)")
raDLBCL4 <- extractBic(resDLBCL4,thresZ=0.01,thresL=0.05)
if ((raDLBCL4$bic[[1]][1]>1) && (raDLBCL4$bic[[1]][2])>1) {
plotBicluster(raDLBCL4,1)
}
if ((raDLBCL4$bic[[2]][1]>1) && (raDLBCL4$bic[[2]][2])>1) {
plotBicluster(raDLBCL4,2)
}
if ((raDLBCL4$bic[[3]][1]>1) && (raDLBCL4$bic[[3]][2])>1) {
plotBicluster(raDLBCL4,3)
}
if ((raDLBCL4$bic[[4]][1]>1) && (raDLBCL4$bic[[4]][2])>1) {
plotBicluster(raDLBCL4,4)
}
plot(resDLBCL4,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL4,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
}
Run the code above in your browser using DataLab