powered by
Information gain filter calling FSelectorRcpp::relief() in package FSelectorRcpp.
FSelectorRcpp::relief()
mlr3filters::Filter -> FilterRelief
mlr3filters::Filter
FilterRelief
FilterRelief$new()
FilterRelief$clone()
mlr3filters::Filter$calculate()
mlr3filters::Filter$format()
mlr3filters::Filter$help()
mlr3filters::Filter$print()
new()
Create a FilterRelief object.
clone()
The objects of this class are cloneable with this method.
FilterRelief$clone(deep = FALSE)
deep
Whether to make a deep clone.
Dictionary of Filters: mlr_filters
Other Filter: Filter, mlr_filters_anova, mlr_filters_auc, mlr_filters_carscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain, mlr_filters_jmim, mlr_filters_jmi, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_variance, mlr_filters
Filter
mlr_filters_anova
mlr_filters_auc
mlr_filters_carscore
mlr_filters_cmim
mlr_filters_correlation
mlr_filters_disr
mlr_filters_find_correlation
mlr_filters_importance
mlr_filters_information_gain
mlr_filters_jmim
mlr_filters_jmi
mlr_filters_kruskal_test
mlr_filters_mim
mlr_filters_mrmr
mlr_filters_njmim
mlr_filters_performance
mlr_filters_permutation
mlr_filters_variance
mlr_filters
# NOT RUN { ## Relief (default) task = mlr3::tsk("pima") filter = flt("relief") filter$calculate(task) head(filter$scores, 3) as.data.table(filter) # }
Run the code above in your browser using DataLab