Learn R Programming

mlr3filters (version 0.4.0)

mlr_filters_relief: Information Gain Filter

Description

Information gain filter calling FSelectorRcpp::relief() in package FSelectorRcpp.

Arguments

Super class

mlr3filters::Filter -> FilterRelief

Methods

Public methods

Method new()

Create a FilterRelief object.

Usage

FilterRelief$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

FilterRelief$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters_anova, mlr_filters_auc, mlr_filters_carscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain, mlr_filters_jmim, mlr_filters_jmi, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_variance, mlr_filters

Examples

Run this code
# NOT RUN {
## Relief (default)
task = mlr3::tsk("pima")
filter = flt("relief")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)
# }

Run the code above in your browser using DataLab