powered by
Variance filter calling stats::var().
stats::var()
Argument na.rm defaults to TRUE here.
na.rm
TRUE
mlr3filters::Filter -> FilterVariance
mlr3filters::Filter
FilterVariance
FilterVariance$new()
FilterVariance$clone()
mlr3filters::Filter$calculate()
mlr3filters::Filter$format()
mlr3filters::Filter$help()
mlr3filters::Filter$print()
new()
Create a FilterVariance object.
clone()
The objects of this class are cloneable with this method.
FilterVariance$clone(deep = FALSE)
deep
Whether to make a deep clone.
Dictionary of Filters: mlr_filters
Other Filter: Filter, mlr_filters_anova, mlr_filters_auc, mlr_filters_carscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain, mlr_filters_jmim, mlr_filters_jmi, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters
Filter
mlr_filters_anova
mlr_filters_auc
mlr_filters_carscore
mlr_filters_cmim
mlr_filters_correlation
mlr_filters_disr
mlr_filters_find_correlation
mlr_filters_importance
mlr_filters_information_gain
mlr_filters_jmim
mlr_filters_jmi
mlr_filters_kruskal_test
mlr_filters_mim
mlr_filters_mrmr
mlr_filters_njmim
mlr_filters_performance
mlr_filters_permutation
mlr_filters_relief
mlr_filters
# NOT RUN { task = mlr3::tsk("mtcars") filter = flt("variance") filter$calculate(task) head(filter$scores, 3) as.data.table(filter) # }
Run the code above in your browser using DataLab