Replicate the input as a Multiplicity, causing subsequent PipeOps to be executed multiple
reps times.
Note that Multiplicity is currently an experimental features and the implementation or UI
may change.
PipeOpReplicate$new(id = "replicate", param_vals = list())
id :: character(1)
Identifier of the resulting object, default "replicate".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default list().
PipeOpReplicate has one input channel named "input", taking any input ("*") both during training and prediction.
PipeOpReplicate has one output channel named "output" returning the replicated input as a
Multiplicity of type any ("[*]") both during training and prediction.
The $state is left empty (list()).
reps :: numeric(1)
Integer indicating the number of times the input should be replicated.
Only fields inherited from PipeOp.
Only methods inherited from PipeOp.
Other PipeOps:
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreprocSimple,
PipeOpTaskPreproc,
PipeOp,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encode,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_scale,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson,
mlr_pipeops
Other Multiplicity PipeOps:
Multiplicity(),
PipeOpEnsemble,
mlr_pipeops_classifavg,
mlr_pipeops_featureunion,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_regravg
Other Experimental Features:
Multiplicity(),
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite
# NOT RUN {
library("mlr3")
task = tsk("iris")
po = po("replicate", param_vals = list(reps = 3))
po$train(list(task))
po$predict(list(task))
# }
Run the code above in your browser using DataLab