Linearly transforms numeric data columns so they are between lower
and upper. The formula for this is \(x' = offset + x * scale\),
where \(scale\) is \((upper - lower) / (max(x) - min(x))\) and
\(offset\) is \(-min(x) * scale + lower\). The same transformation is applied during training and
prediction.
R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.
PipeOpScaleRange$new(id = "scalerange", param_vals = list())
id :: character(1)
Identifier of resulting object, default "scalerange".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().
Input and output channels are inherited from PipeOpTaskPreproc.
The output is the input Task with scaled numeric features.
The $state is a named list with the $state elements inherited from PipeOpTaskPreproc,
as well as the two transformation parameters \(scale\) and \(offset\) for each numeric
feature.
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
lower :: numeric(1)
Target value of smallest item of input data. Initialized to 0.
upper :: numeric(1)
Target value of greatest item of input data. Initialized to 1.
Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.
Other PipeOps:
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreprocSimple,
PipeOpTaskPreproc,
PipeOp,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encode,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scale,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson,
mlr_pipeops
# NOT RUN {
library("mlr3")
task = tsk("iris")
pop = po("scalerange", param_vals = list(lower = -1, upper = 1))
task$data()
pop$train(list(task))[[1]]$data()
pop$state
# }
Run the code above in your browser using DataLab