coxreg instead.mlreg(formula = formula(data), data = parent.frame(),
na.action = getOption("na.action"), init=NULL, method = c("ML", "MPPL"),
control = list(eps = 1e-08, maxiter = 10, n.points = 12, trace = FALSE),
singular.ok = TRUE, model = FALSE, center = TRUE,
x = FALSE, y = TRUE, boot = FALSE, geometric = FALSE,
rs=NULL, frailty = NULL, max.survs=NULL)options()$na.action.eps (convergence
criterion), maxiter (maximum number of iterations), and
silent (logical, controlling amount of output). You can
change any component without mention the other(s).TRUE, the intensity is assumed constant
within strata.c("mlreg", "coxreg", "coxph") with componentsNULL if not).rs is dangerous, see note above. It
can however speed up computing time.ML performs a true discrete analysis, i.e., one parameter
per observed event time. Method MPPL is a compromize between the
discrete and continuous time approaches; one parameter per observed
event time with multiple events. With no ties in data, an ordinary Cox
regression (as with coxreg) is performed.coxreg, risksetsdat <- data.frame(time= c(4, 3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0),
sex= c(0, 0,0,0,1,1,1))
mlreg( Surv(time, status) ~ x + strata(sex), data = dat) #stratified model
# Same as:
rs <- risksets(Surv(dat$time, dat$status), strata = dat$sex)
mlreg( Surv(time, status) ~ x, data = dat, rs = rs) #stratified modelRun the code above in your browser using DataLab